首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls
Institution:Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
Abstract:In this work, a cost-effective and facile method was adopted for the fabrication of graphene oxide nanoscrolls (GONS) by low frequency (20 kHz) ultrasonication with tunable dimensions. The graphene oxide (GO) was synthesized by modified Hummer’s method using synthetic graphite as a base material. Later, GO suspension (0.05 g L−1) were made using methanol as solvent and subjected to different ultrasonication conditions. It was found that GO sheets curls themselves into nanoscrolls by overcoming the energy barrier for scrolling with the help of bubble cavitation energy provided by ultrasonication. Also, the effect of ultrasonication power (100–150 W) for irradiation time (0.5–3 h) over the GONS dimensions were investigated. The spiral wounded GONS structures were shown using electron microscopy. Raman Spectroscopy, Thin-film X-Ray Diffraction, Energy Dispersive X-Ray, FT Infrared Spectroscopic analysis were also done to endorse GONS formation. Factors affecting GONS formation such as sonication power and solvent selection were studied as scrolling of GO sheets are strongly dependent on sonication parameters and solvent characteristics. It was found that GONS length varies inversely with irradiation time for identical power density. Also, a solvent with relatively large Hansen solubility parameter, lower dipole movement and less negative value of zeta potential support GONS formation of longer length. Raman analysis overlays the rapid oxygen-defect site cleavage mechanism. The obtained GONS unlocks further developments in various engineering applications like adsorption, drug delivery and filtration membrane.
Keywords:Graphene oxide nanoscrolls  Hummer’s method  Synthetic graphite  Ultrasonication  Solvent characteristics  Bubble cavitation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号