首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter
Institution:Key Laboratory of the Three Gorges Reservoir Region′s Eco-environment of Ministry of Education, Chongqing University, Chongqing 400045, China
Abstract:Harmful algal blooms negatively impact ecosystems and threaten drinking water sources. One potential method to effectively counteract algal blooms is ultrasonication. However, ultrasonication can easily lead to the release of intracellular organic matter (IOM). The purpose of this study was to investigate the relationship between the destruction of algal cells and IOM release at different ultrasound frequencies. Microcystis aeruginosa cells were ultrasonicated at 20 kHz with an intensity of 0.038 W/mL, 740 kHz with an intensity of 0.113 W/mL, and 1120 kHz with an intensity of 0.108 W/mL. The IOM release was detected by fluorescence spectroscopy in addition to the more commonly used haemocytometry and optical density. After ultrasonication for 15 min, the removal rate of algal cells reached 10.5% at 20 kHz, 9.46% at 740 kHz, and 35.4% at 1120 kHz. The 20 kHz and 740 kHz ultrasound caused local damage to algal cells and then disrupted them, whereas the 1120 kHz ultrasound directly disrupted most algal cells. The extracellular organic matter (EOM), which was increased by ultrasonication, mainly consisted of protein-like compounds, chlorophyll, and a small amount of humic-like substances. Gas vacuoles had been destructed before the cells were broken, as indicated by the decrease of cell size and the wrinkles on the cell surface. Moreover, the removal of algae cells while upholding integrity is more conducive to the safety of the water environment.
Keywords:Cell disruption  Intracellular organic matter release  Ultrasonication
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号