首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic-oxidative/adsorptive denitrogenation of model hydrocarbon fuels under ultrasonic field using magnetic reduced graphene oxide-based phosphomolybdic acid (PMo-Fe3O4/rGO)
Institution:Chemical Engineering Department, Al-Nahrain University, Baghdad, Iraq
Abstract:In this work, the effect of ultrasound irradiation on the catalytic oxidative/adsorptive denitrogenation (COADN) of model hydrocarbon fuels (composed of pyrrole or indole as an organonitrogen compounds dissolved in n-nonane) has been investigated using magnetic reduced graphene oxide supported with phosphomolybdic acid (PMo-Fe3O4/rGO) as a heterogeneous catalyst/adsorbent and hydrogen peroxide as an oxidant. The synthesized PMo-Fe3O4/rGO nanocomposite was characterized by XRD, FE-SEM, VSM and BET surface area analysis methods. Moreover, different experimental variables including catalyst dose, initial pyrrole/indole concentration, H2O2 to pyrrole/indole molar ratio, ultrasound power and sonication time have been studied on the COADN process. The regeneration/recyclability of PMo-Fe3O4/rGO catalyst was also examined. Experimental results revealed that, the ultrasound treatment significantly improved the adsorption process of organonitrogen compounds from model fuels (qe increased by 50.3% for pyrrole and 18% for indole). Furthermore, high ultrasound-aided catalytic oxidative denitrogenation efficiency (85.6% for pyrrole and 90% for indole) has been attained under optimal conditions (ultrasonic power = 200 W, sonication time = 240 min, catalyst dose = 2 g/L, and H2O2:pyrrole/indole molar ratio = 5). The recyclability of catalyst displayed that the prepared catalyst can be reused five times without any significant reduction in its performance.
Keywords:Ultrasound  Adsorptive  Oxidative  Denitrogenation  Catalyst  Model fuel
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号