首页 | 本学科首页   官方微博 | 高级检索  
     


MCMC Control Spreadsheets for Exponential Mixture Estimation
Authors:Marie-Anne Gruet  Anne Philippe  Christian P. Robert
Affiliation:1. INRA, Department of Biometrics and Artificial Intelligence , F-78352, Jouy-en-Josas, France;2. Université de Rouen de Lille I, Laboratory of Probability and Statistics , CNRS E.P. 1765, 59655 Villeneuve d'Ascq Cedex, France;3. Université de Rouen and CREST-ENSAE , 3 Avenue Pierre Larousse, 92245 Malakoff Cedex, Paris , France
Abstract:Abstract

This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.
Keywords:Allocation map  Central limit theorem  Convergence control  Gibbs sampler  Normality test  Reversible jump  Sub-sampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号