首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chiral recognition by cyclic oligosaccharides. Enantioselective complexation of binaphthyl derivatives with cyclodextrins
Authors:Koji Kano  Yoko Tamiya  Chuhei Otsuki  Takako Shimomura  Teruhisa Ohno  Osamu Hayashida
Institution:1. Department of Applied Chemistry , Faculty of Engineering, Doshisha University , Kamikyo-ku, Kyoto, 602, Japan;2. Department of Chemical Science and Technology , Faculty of Engineering, Kyushu University , Hakozaki, Higashi-ku, Fukuoka, 812, Japan
Abstract:Abstract

Chiral recognition of binaphthyl derivatives, such as 1,1′-bi-2-naphthol (1), 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate (2), and 2,2′-dihydroxy-1,1′-binaphthyl-3,3′-dicarboxylic acid (3), by cyclodextrins (CDxs) has been studied. The S enantiomers of 1 and 2 are bound to heptakis(2,3,6-tri-O-methyl)-β-CDx (TMe-β-CDx) as well as β-CDx more strongly than the R enantiomers. The molecular mechanics and molecular dynamics calculations for the 1:1 complex of 1 and β-CDx suggest that more effective van der Waals contacts and intermolecular hydrogen bonding stabilize the complex of S-1 compared with that of R-1. Meanwhile the R enantiomer of 3 is the preferable guest for β- and TMe-β-CDxs. Circular dichroism spectroscopy suggests that the complex of S-3 is more unstable than that of R-3 because the dihedral angle of the naphthalene planes of S-3 needs to be reduced for forming the inclusion complex. The enantiomers of the guest binaphthyls are completely separated by means of capillary zone electrophoresis (CZE) when TMe-β-CDx is used as a separating agent. The results of the CZE correspond well with those of the binding constants of the inclusion complexes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号