首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance of the Gibbs,Hit-and-Run,and Metropolis Samplers
Authors:Ming-Hui Chen  Bruce Schmeiser
Institution:1. Department of Mathematical Sciences , Worcester Polytechnic Institute , Worcester , MA , 01609 , USA;2. School of Industrial Engineering , Purdue University , West Lafayette , IN , 47907-1287 , USA
Abstract:Abstract

We consider the performance of three Monte Carlo Markov-chain samplers—the Gibbs sampler, which cycles through coordinate directions; the Hit-and-Run (H&R) sampler, which randomly moves in any direction; and the Metropolis sampler, which moves with a probability that is a ratio of likelihoods. We obtain several analytical results. We provide a sufficient condition of the geometric convergence on a bounded region S for the H&R sampler. For a general region S, we review the Schervish and Carlin sufficient geometric convergence condition for the Gibbs sampler. We show that for a multivariate normal distribution this Gibbs sufficient condition holds and for a bivariate normal distribution the Gibbs marginal sample paths are each an AR(1) process, and we obtain the standard errors of sample means and sample variances, which we later use to verify empirical Monte Carlo results. We empirically compare the Gibbs and H&R samplers on bivariate normal examples. For zero correlation, the Gibbs sampler provides independent data, resulting in better performance than H&R. As the absolute value of the correlation increases, H&R performance improves, with H&R substantially better for correlations above .9. We also suggest and study methods for choosing the number of replications, for estimating the standard error of point estimators and for reducing point-estimator variance. We suggest using a single long run instead of using multiple iid separate runs. We suggest using overlapping batch statistics (obs) to get the standard errors of estimates; additional empirical results show that obs is accurate. Finally, we review the geometric convergence of the Metropolis algorithm and develop a Metropolisized H&R sampler. This sampler works well for high-dimensional and complicated integrands or Bayesian posterior densities.
Keywords:AR(1) process  Bayesian posteriors  Geometric convergence  Markov chain  Monte Carlo  Multidimensional integration  Overlapping batch statistics  Simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号