首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   12篇
  国内免费   7篇
化学   16篇
数学   7篇
物理学   51篇
  2021年   5篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   11篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1988年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
分析外加均匀磁场对于碳离子笔形束剂量分布的影响,并考虑修正这种影响,为磁共振成像引导碳离子放射治疗的临床应用提供指导。本文利用蒙特卡罗方法模拟计算了不同能量碳离子笔形束在不同强度磁场下的剂量分布情况,发现垂直于碳离子束入射方向的均匀磁场对于碳离子笔形束射程缩短的影响很小,磁场对碳离子束的主要影响是引起束流横向偏转,特别是碳离子束布拉格峰位置的横向侧移。横向侧移程度与碳离子束的能量和磁场强度相关,根据模拟结果,得到了一个计算碳离子束布拉格峰在磁场中相对横向偏转的方程,并提出一种校正外加磁场引起的碳离子束布拉格峰横移的角度修正方法。这些结果可用于指导磁共振图像引导碳离子放射治疗计划系统的研发。  相似文献   
2.
廖友  王冬梅  谷战军 《化学学报》2021,79(12):1438-1460
放射治疗是利用高能射线抑制癌细胞增殖的治疗方法, 已广泛用于恶性肿瘤的治疗. 但是, 高能射线不可避免地会对机体的正常组织造成损害, 产生放疗相关副作用. 尽管目前有一些小分子放疗防护药物已应用于临床或处于临床前研究, 但其较短的血液循环时间和较快的新陈代谢速度极大地削弱了其防护效果. 近20年来, 随着纳米技术在生物医学领域的飞速发展, 纳米放疗防护剂的出现为提高防护效果提供了新的选择. 通过合理地设计和开发纳米放疗防护剂, 有望解决现有小分子放疗防护药物的缺陷. 鉴于纳米放疗防护剂具有诸多优势, 本Review概述了纳米放疗防护材料的常见设计策略, 同时分析了放射诱导的常见疾病的致病机制和纳米放疗防护材料防治各种放射诱导疾病的研究现状. 最后, 还讨论了纳米材料用于放疗防护所面临的挑战和未来前景.  相似文献   
3.
Raman spectroscopy provides information on bone chemical composition and structure via widely used metrics including mineral to matrix ratio, mineral crystallinity and carbonate content, collagen crosslinking ratio and depolarization ratios. These metrics are correlated with bone material properties, such as hardness, plasticity and Young''s modulus. We review application of Raman spectroscopy to two important irradiated animalmodels: the mouse tibia, amodel for damage to cortical bone sites including the rib (breast cancer) and to healthy tissue adjacent to extremity sarcomas, and the rat mandible, a model for radiation damage in head and neck cancer radiotherapy. Longitudinal studies of irradiated mouse tibia demonstrate that radiation-induced matrix abnormalities can persist even 26 weeks postradiation. Polarized Raman spectroscopy shows formation of more ordered orientation of both mineral and collagen. At 8 weeks post-radiation, irradiated rat hemimandible exhibits transient hypermineralization, increased collagen cross-linking and decreased depolarization ratios of mineral and collagen. A standard radioprotectant, amifostine, mitigates rat mandible radiation damage, with none remaining detectable 18 weeks post-radiation. Already a powerful tool to monitor radiation damage, Raman spectroscopy may be important in development of new radiotherapy protocols and radioprotective agents. Further in vivo studies of radiation effects on the rodent models are underway, as are development of methodologies for eventual use in human subjects.  相似文献   
4.
The multi-objective optimization of inverse planning based on the Pareto solution set, according to the multi-objective character of inverse planning in accurate radiotherapy, was studied in this paper. Firstly,the clinical requirements of a treatment plan were transformed into a multi-objective optimization problem with multiple constraints. Then, the fast and elitist multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-Ⅱ)was introduced to optimize the problem. A clinical example was tested using this method. The results show that an obtained set of non-dominated solutions were uniformly distributed and the corresponding dose distribution of each solution not only approached the expected dose distribution, but also met the dosevolume constraints. It was indicated that the clinical requirements were better satisfied using the method and the planner could select the optimal treatment plan from the non-dominated solution set.  相似文献   
5.
In this paper, we have addressed the problem of the radiation transport with the Monte Carlo N particle(MCNP) code. This is a general purpose Monte Carlo tool designed to transport neutron, photon and electron in three dimensional geometries. To examine the performance of MCNP5 code in the field of external radiotherapy, we performed the modeling of an Electron Density phantom (EDP) irradiated by photons from 60Co source. The model was used to calculate the Percent Depth Dose (PDD) at different depths in an EDP. One field size for PDD has been examined. A 60Co photons source placed at 80 cm source to surface distance (SSD). The results of calculations were compared to TPS data obtained at National Institute of Oncology of Rabat.  相似文献   
6.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   
7.
Photoneutron contaminations in and out of high energy X-ray beams of the medical linear accelerator SATURNE 20 (CGR) of the Radiotherapy Department of Omeed Hospital in Isfahan, Iran, have been determined using 250 μm polycarbonate (PC) dosimeters, in strips or in sheets, processed by electrochemical etching (ECE) using specially designed ECE chambers to etch larger sheets. A two dimensional or topographical distribution of neutron contamination was also determined in a full size beam. The neutron dose equivalents (Hn) in the beam of 18 MV X-rays at 80 cm FSD were determined to be linear functions of X-ray dose equivalents (Hx) up to 1400 cSv. The distribution of the Hn at different X-ray doses showed bell-shape profiles with maxima at the isocenter. The ratios of dose equivalents of neutrons to those of X-rays increased as the field size increased having values of 0.22%, 0.28%, 0.31% and 0.37% for field sizes of 10×10, 20×20, 30×30, and 40×40 cm2 respectively. Although such neutron dose equivalents can be corrected for patient treatment, it can cause radiation protection problems for workers where the design of the facility is not well planned.  相似文献   
8.
The paper describes the applicability of commercially available alanine detectors produced by Synergy Health for verification of the dose distribution calculated by the treatment planning system (TPS) used in proton eye radiotherapy – Eclipse Ocular Proton Planning (EOPP) program, version 8.9.06, Varian Medical Systems. The TPS-planned dose distribution at selected points in the eye phantom is compared to the dose registered by alanine detectors at these points during a simulated therapeutic irradiation at the proton eye radiotherapy facility in the Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN), Krakow, Poland. The phantom was irradiated to obtain, a typical for choroidal melanoma, fraction dose of 15 CGE (13,64 Gy) at the tumor location. The dose registered with alanine pellets located inside the simulated tumor volume demonstrates a good agreement with the TPS-planned dose. The typical for proton radiotherapy, steep dose fall-off outside the treated area is registered by the alanine pellets however, it is difficult to assess it quantitatively, because the dose related EPR signal is registered from the entire pellet volume.  相似文献   
9.
This review of dosimetry for second cancer risk estimation introduces work carried out by Working Group 9 (WG9: Radiation Protection Dosimetry in Medicine) of the European Radiation Dosimetry Group (EURADOS). The work concentrates on the measurement of out-of-field doses in water phantoms using a variety of dosimeters to measure photon and neutron doses. These include optically stimulated luminescence (OSL), radiophotoluminescence (RPL) and thermoluminescence (TLD) dosimeters for photon dosimetry (together with ion chambers for reference measurements) and track etch and superheated emulsion detectors for neutron measurements. The motivation of WG 9 was to assess undue, non-target patient doses in radiotherapy and the related risks of second malignancy. Improvements in cancer treatment have increased survival times and thus increased incidence of second cancer may be expected in the future. In addition, increased whole body exposure may result from some developments in radiotherapy. This means that radiotherapy clinics will need to simulate their treatments in order to estimate and minimise doses to healthy tissues and organs. The proposed work is designed to generate a robust dataset of out-of-field dose measurements which can be used for the development and validation of dose algorithms.  相似文献   
10.
基于视频的精确放疗摆位系统研究   总被引:2,自引:0,他引:2  
重点介绍了中国科学院等离子体物理研究所“精确放射治疗系统”课题组在基于视频的摆位方法领域的最新研究成果,如基于双目视觉的摆位系统、基于轮廓匹配的位置测量系统和呼吸门控系统。简要介绍了这些方法的原理、应用场合及应用前景。This paper introduces the newest research production on patient positioning method in accurate radiotherapy brought by Accurate Radiotherapy Treating System (ARTS) research team of Institute of Plasma Physics of Chinese Academy of Sciences, such as the positioning system based on binocular vision, the position-measuring system based on contour matching and the breath gate controlling system for positioning. Their basic principle, the application occasion and the prospects are briefly depicted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号