首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
化学   3篇
物理学   6篇
  2019年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Zun Liang  Han Du 《Molecular physics》2019,117(20):2881-2888
ABSTRACT

We employ molecular-dynamics (MD) simulations to study grain boundary (GB) premelting in ices confined in two-dimensional hydrophobic nano-channels. Premelting transitions are observed in symmetric tilt GBs in monolayer ices and involve the formation of a premelting band of liquid phase water with a width that grows logarithmically as the melting temperature is approached from below, consistent with the existing theory of GB premelting. The premelted GB is found rough for a broad range of temperature below the melting temperature, the two ice-premelt interfaces bounding the melted GB are engaged with long wave-length parallel coupled fluctuations. Based on current MD simulation study, one may expect GB premelting transitions exist over a wide range of low dimensional phases of confined ice and shows important consequences for crystal growth of low dimensional ices.  相似文献   
2.
Strain induced grain boundary premelting in bulk copper bicrystals   总被引:1,自引:0,他引:1  
In bulk bicrystals strain induced grain boundary premelting (SIGBPM) occurs when heavy screw dislocation pileup can be held up to a certain high temperature, approximately 0.6T M, where T M is the melting point of bulk material in Kelvin. SIGBPM occurs at grain boundaries to which new twist component is added due to the rotation of both component crystals toward opposite direction about the axis perpendicular to the grain boundary plane. At the original grain boundary, grain boundary sliding takes place due to this relative rotation. In f.c.c. metals with relatively low stacking fault energies such as copper, nickel, brass(30Zn) and silver, dislocations dissociate into partials. Therefore high density tangled dislocations introduced during plastic deformation hardly loose. If these dislocations can be held to high temperatures, SIGBPM is promoted. Formation of static or dynamic recrystallized grains suppresses SIGBPM itself and the propagation of grain boundary cracks formed by SIGBPM.  相似文献   
3.
X‐ray diffraction methods and differential scanning calorimetry thermal analysis have been used to investigate the structural changes of syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay nanocomposites have been prepared by the mixing of sPS polymer solutions with organically modified montmorillonite. X‐ray diffraction data and differential scanning calorimetry results indicate that the dominating crystal forms and their relative fractions in sPS and sPS/clay nanocomposites are different for various premelting temperatures (Tmax's). Higher Tmax's favor the formation of the thermodynamically more stable β‐crystalline form, and its relative fraction has been obtained from the X‐ray diffraction data in the range of 11.5–13°. The intensity of the X‐ray diffraction data in the range of 11.5–13° decreases as the thickness of sPS/clay nanocomposites decreases from 150 to 20 μm. At the same time, the intensity of the X‐ray data in the range of 6–7° becomes sharper as the thickness of sPS/clay nanocomposites decreases. The calculation ratio based on the peak intensities at 6.2 and 6.8° for sPS/clay nanocomposites of equal thickness and crystallinity in the pure β and α forms has also been determined in this study. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1730–1738, 2003  相似文献   
4.
应变效应对金属Cu表面熔化影响的分子动力学模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
王海龙  王秀喜  梁海弋 《物理学报》2005,54(10):4836-4841
采用Mishin镶嵌原子势,通过分子动力学方法模拟了金属Cu 的(110)表面在不同应变下的熔 化行为,分析了表面熔化过程中系统结构组态和能量的变化以及固液界面迁移情况.金属Cu 的(110)表面在低于热力学熔点的温度下发生预熔化,准液体层的厚度随温度升高而增加.当 温度高于热力学熔点时,固液界面的移动速度与温度成正比,外推得到热力学熔点为1380K ,与实验结果1358K吻合良好.应变效应(包括拉伸和压缩)导致热力学熔点降低,并促进表 面预熔化进程.在相同温度条件下,准液体层的厚度随应变绝对值的增加而增大.应变效应导 致的固相自由能增加是金属Cu(110)表面热稳定性下降的主要因素,且表面应力和应变方向 的异同也会影响表面预熔化的进程. 关键词: 表面预熔化 热力学熔点 表面应力 分子动力学  相似文献   
5.
A polycrystalline copper sample was compressed at room temperature, then the temperature was raised to 873 K in a vacuum and annealed without unloading. Grain boundary cracks were found at 3 coherent twin boundaries. The formation of these cracks can be interpreted based on the idea of strain induced grain boundary premelting (SIGBPM). It is emphasized that 3 twin boundaries can be one of the most dangerous boundaries for crack formation when certain experimental conditions are satisfied.  相似文献   
6.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   
7.
Recent observations of three classes of nanometer-thick, disordered, interfacial films in multicomponent inorganic materials are reviewed and critically assessed. The three classes of films are equilibrium-thickness intergranular films (IGFs) in ceramics, their free-surface counterparts, that is, surficial amorphous films (SAFs), and their metallic counterparts. Also briefly reviewed are several related wetting and adsorption phenomena in simpler systems, including premelting in unary systems, prewetting in binary liquids or vapor adsorption on inert walls, and frustrated-complete wetting. Analogous diffuse-interface and force-balance models are discussed with the goal of exploring a unifying thermodynamic framework. In general, the stability of these nanometer-thick interfacial films does not follow bulk phase diagrams. Stabilization of quasi-liquid interfacial films at subeutectic or undersaturation conditions in multicomponent materials can be understood from coupled interfacial premelting and prewetting transitions. More realistic models should include additional interfacial interactions, for example, dispersion and electrostatic forces, and consider the possibility for metastable equilibration. It is suggested that quasi-liquid grain boundary films in binary metallic systems can be used to validate a basic thermodynamic model. These nanoscale interfacial films are technologically important. For example, the short-circuit diffusion that occurs in interface-stabilized, subeutectic, quasi-liquid films explains the long-standing mystery of the solid-state activated sintering mechanism in ceramics, refractory metals, and ice.  相似文献   
8.
张凯旺  钟建新 《物理学报》2008,57(6):3679-3683
利用分子动力学模拟研究了具有几种常见缺陷的单壁碳纳米管的熔化与预熔化性质. 研究结果表明, 类似于纳米颗粒和聚合物, 碳纳米管发生熔化时的Lindemann指数为003, 远低于晶体熔化的判据01—015 使用Lindemann指数, 得出标准碳纳米管的熔化温度为4800K左右, 而带缺陷的碳纳米管的熔化总是从缺陷处开始, 并且缺陷会影响碳纳米管局部的熔化温度, 导致局部预熔化. Stone-Wales缺陷在2600K引起碳纳米管的局部熔化,空位缺陷导致的局部熔化温度在3200K, 而具有硅替位缺陷的碳纳米管在3800K以下具有很好的热稳定性. 关键词: 熔化 预熔化 缺陷 碳纳米管  相似文献   
9.
The crystallinity of poly(ethyleneterephthalate) has been determined by differential scanning calorimetry and by density. The results obtained by calorimetry show that the increment in the crystallinity due to the heatsetting treatment is produced by the increase of the crystallinity corresponding to the premelting endothermic peak.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号