首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   39篇
  国内免费   2篇
化学   172篇
综合类   1篇
数学   3篇
物理学   22篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   15篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   15篇
  2015年   7篇
  2014年   9篇
  2013年   10篇
  2012年   15篇
  2011年   10篇
  2010年   9篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有198条查询结果,搜索用时 146 毫秒
1.
A zwitterionic heterocyclic boronic acid based on 4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity for sialic acid or N-acetylneuraminic acid (Neu5Ac, K=5390±190 m −1) through the formation of a cyclic boronate ester complex under acidic conditions (pH 3). This anomalous pH-dependent binding enhancement does not occur with common neutral saccharides (e.g., glucose, fructose, sorbitiol), because it is mediated via selective complexation to a α-hydroxycarboxylate moiety forming a stable ion pair and ternary complex with Neu5Ac in phosphate buffer. IQBA expands biorecognition beyond classical vicinal diols under neutral or alkaline buffer conditions, which enables the direct analysis of Neu5Ac by native fluorescence with sub-micromolar detection limits.  相似文献   
2.
The introduction of Asn-linked glycans to nascent polypeptides occurs in the lumen of the endoplasmic reticulum of eukaryotic cells. After the removal of specific sugar residues, glycoproteins acquire signals in the glycoprotein quality control (GPQC) system and enter the folding cycle composed of lectin-chaperones calnexin (CNX) and calreticulin (CRT), glucosidase II (G-II), and UDP-Glc:glycoprotein glucosyltransferase (UGGT). G-II initiates glycoproteins’ entry and exit from the cycle, and UGGT serves as the “folding sensor”. This account summarizes our effort to analyze the properties of enzymes and lectins that play important roles in GPQC, especially those involved in the CNX/CRT cycle. To commence our study, general methods for the synthesis of high-mannose-type glycans and glycoproteins were established. Based on these, various substrates to analyze components of the GPQC were created, and properties of CRT, G-II, and UGGT have been clarified.  相似文献   
3.
Selenocysteine, the selenium‐containing analogue of cysteine, is the twenty‐first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.  相似文献   
4.
张宇  汤扬  徐伟 《分析测试学报》2021,40(2):227-231
非变性质谱技术已成为表征蛋白质结构的重要工具之一。与传统的电喷雾喷针(Electrospray emitter,ESI emitter)相比,亚微米电喷雾喷针具有改变离子电荷态分布和降低盐离子加合等多种特性,可在生理环境下直接解析蛋白质的结构。该文综述了亚微米电喷雾喷针的特性及其在非变性质谱分析中的应用,并对其未来的发展趋势进行了展望。  相似文献   
5.
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.  相似文献   
6.
7.
After the discovery of insulin as a drug for diabetes, the pharmaceutical companies were faced with the challenge to meet the demand for insulin with the highest possible degree of purity in the required quantities from animal sources. The observation of an immune reaction of patients to insulin from animal pancreatic extracts made the availability of human insulin of highest priority. Only the enzyme‐catalyzed semisynthesis at the C‐terminus of the insulin B‐chain led to a commercial process, but it depended on porcine insulin and was aggravated by supply concerns. The advent of rDNA technology allowed the commercial preparation of human insulin by biosynthesis in virtually unlimited quantities. An increased chemical diversity was only envisaged through chemical synthesis, which was simplified by advances in solid‐phase peptide synthesis and chemical ligation. Single‐chain insulin precursors are now being synthesized that should enable fast screening of insulin analogues for improved biophysical, biological, and thus promising new therapeutic properties, as well as for the industrial manufacture of insulin analogues not accessible by biosynthesis.  相似文献   
8.
Protein chemical synthesis can provide the homogeneous atypical ubiquitin chains that are usually difficult to obtain by other methods. Herein, we report a new one-pot ligation approach for the synthesis of atypical Ub chains based on the Tfacm-protected isoUb building block with operational simplicity and high efficiency. The key intermediate, the Tfacm-protected isoUb building block can be readily prepared by Fmoc SPPS. The practicality and efficiency of the new method is demonstrated by the successful preparation of K11-linked di-Ub.  相似文献   
9.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   
10.
Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid‐sensing ion channels (ASICs). The 57‐residue polypeptide mambalgin‐2 (Ma‐2) was synthesized by using a combination of solid‐phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three‐finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma‐2 on wild‐type and mutant ASIC1a receptors allowed us to identify α‐helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma‐2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure–activity relationship (SAR) studies and further development of this promising analgesic peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号