首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20403篇
  免费   2632篇
  国内免费   2345篇
化学   14553篇
晶体学   185篇
力学   1812篇
综合类   127篇
数学   1385篇
物理学   7318篇
  2024年   43篇
  2023年   195篇
  2022年   472篇
  2021年   587篇
  2020年   708篇
  2019年   570篇
  2018年   504篇
  2017年   585篇
  2016年   707篇
  2015年   777篇
  2014年   988篇
  2013年   1610篇
  2012年   1180篇
  2011年   1496篇
  2010年   1193篇
  2009年   1293篇
  2008年   1361篇
  2007年   1350篇
  2006年   1312篇
  2005年   1126篇
  2004年   1026篇
  2003年   846篇
  2002年   852篇
  2001年   574篇
  2000年   546篇
  1999年   445篇
  1998年   435篇
  1997年   388篇
  1996年   332篇
  1995年   302篇
  1994年   247篇
  1993年   205篇
  1992年   212篇
  1991年   142篇
  1990年   134篇
  1989年   91篇
  1988年   96篇
  1987年   57篇
  1986年   58篇
  1985年   53篇
  1984年   49篇
  1983年   17篇
  1982年   49篇
  1981年   28篇
  1980年   29篇
  1979年   23篇
  1978年   19篇
  1977年   13篇
  1976年   21篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.  相似文献   
2.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
3.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
4.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
5.
6.
7.
油水两液相一维非等温渗流的传递分析   总被引:1,自引:0,他引:1  
在求解油水两液相非等温渗流的温度场、压力场基础上,以驱动功、驱动功率、驱动阻力、驱动速率为特征参数,对该过程进行(火用)传递分析。数值模拟的结果表明:含水通过降低油的相对渗透率、从而增大驱动阻力、减小驱动功率, 最终导致原油产量降低。  相似文献   
8.
A series of (di)picolinic acids and their derivates are investigated as novel complexing tridentate or bidentate ligands in the iron‐mediated reverse atom transfer radical polymerization of methyl methacrylate in N,N‐dimethylformamide at 100 °C with 2,2′‐azobisisobutyrontrile as an initiator. The polymerization rates and polydispersity indices (1.32–1.8) of the resulting polymers are dependent on the structures of the ligands employed. Different iron complexes may be involved in iron‐mediated reverse atom transfer radical polymerization, depending on the type of acid used. 1H NMR spectroscopy has been used to study the structure of the resulting polymers. Chain‐extension reactions have been performed to further confirm the living nature of this catalytic system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2912–2921, 2006  相似文献   
9.
We generalize an analogy between rotating and stratified shear flows. This analogy is summarized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection) to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-dimensional torque G = T2 L, where L is the cylinder length, scales with Reynolds number R and gap width η, G = 1.46η3/2(1 - η)-7/4 R 3/2. At larger Reynolds number, velocity fluctuations become non-negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes: G = 0.50 . These predictions are found to be in excellent agreement with avail-able experimental data. Predictions for scaling of velocity fluctuations are also provided. Received 7 June 2001 and Received in final form 7 December 2001  相似文献   
10.
Three-dimensional radiative transfer in an anisotropic scattering medium exposed to spatially varying, collimated radiation is studied. The generalized reflection function for a semi-infinite medium with a very general scattering phase function is the focus of this investigation. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to formulate a nonlinear integral equation for the generalized reflection function. The integration is over both the polar and azimuthal angles; hence, the integral equation is said to be in the double-integral form. The double-integral, reflection function formulation can handle a variety of anisotropic phase functions and does not require an expansion of the phase function in a Legendre polynomial series. Complicated kernel transformations of previous single-integral studies are eliminated. Single and double scattering approximations are developed. Numerical results are presented for a Rayleigh phase function to illustrate the computational characteristics of the method and are compared to results obtained with the single-integral method. Agreement between the two approaches is excellent; however, as the transform variable increases beyond five the number of quadrature points required for the double-integral method to produce accurate solutions significantly increases. A new interpolation scheme produces accurate results when the transform variable is large.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号