首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   56篇
  国内免费   46篇
化学   183篇
力学   11篇
综合类   14篇
数学   505篇
物理学   274篇
  2023年   7篇
  2022年   7篇
  2021年   12篇
  2020年   15篇
  2019年   15篇
  2018年   13篇
  2017年   22篇
  2016年   25篇
  2015年   21篇
  2014年   53篇
  2013年   81篇
  2012年   36篇
  2011年   47篇
  2010年   45篇
  2009年   49篇
  2008年   55篇
  2007年   62篇
  2006年   53篇
  2005年   46篇
  2004年   37篇
  2003年   42篇
  2002年   40篇
  2001年   26篇
  2000年   33篇
  1999年   18篇
  1998年   21篇
  1997年   13篇
  1996年   10篇
  1995年   13篇
  1994年   7篇
  1993年   10篇
  1992年   10篇
  1991年   4篇
  1990年   9篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有987条查询结果,搜索用时 15 毫秒
1.
Methionine (Met) oxidation is an important biological redox node, with hundreds if not thousands of protein targets. The process yields methionine oxide (MetO). It renders the sulfur chiral, producing two distinct, diastereomerically related products. Despite the biological significance of Met oxidation, a reliable protocol to separate the resultant MetO diastereomers is currently lacking. This hampers our ability to make peptides and proteins that contain stereochemically defined MetO to then study their structural and functional properties. We have developed a facile method that uses supercritical CO2 chromatography and allows obtaining both diastereomers in purities exceeding 99 %. 1H NMR spectra were correlated with X-ray structural information. The stereochemical interconversion barrier at sulfur was calculated as 45.2 kcal mol−1, highlighting the remarkable stereochemical stability of MetO sulfur chirality. Our protocol should open the road to synthesis and study of a wide variety of stereochemically defined MetO-containing proteins and peptides.  相似文献   
2.
NMR is a fast method for obtaining a holistic snapshot of the metabolome and also offers quantitative information without separating the compounds present in a complex mixture. Identification of the metabolites present in a plant extract sample is a crucial step for all plant metabolomics studies. In the present work, we used various two dimensional (2D) NMR methods such as J-resolved NMR, total correlation spectroscopy (TOCSY), and heteronuclear single quantum coherence sensitivity enhanced NMR spectroscopy for the identification of 36 common metabolites present in Coriandrum sativum L. seed extract. The identified metabolites belong to the following classes: organic acids, amino acids, and carbohydrates. 1H NMR spectra of such complex mixtures in general display tremendous signal overlap due to the presence of a large number of metabolites with closely resonating multiplet signals. This signal overlapping leads to ambiguity in an assignment, and hence, identification of metabolites becomes tedious or impossible in many cases. Therefore, the utility of pure-shift proton spectrum along the indirect (F1) dimension of the F1-PSYCHE-TOCSY spectrum is demonstrated for overcoming ambiguity in assignment of metabolites in crowded spectral regions from Coriandrum sativum L. seed extract sample. Because pure-shift NMR methods yield ultrahigh resolution spectrum (i.e., a singlet peak per chemical site) along one or more dimensions, such spectra provide better identification of metabolites compared with regular 2D TOCSY where signal overlap and peak distortions lead to ambiguity in the assignment. Nine metabolites were unambiguously assigned by pure-shift F1-PSYCHE-TOCSY spectrum, which was unresolved in regular TOCSY spectrum.  相似文献   
3.
4.
ABSTRACT

We provide an asymptotic analysis of multi-objective sequential stochastic assignment problems (MOSSAP). In MOSSAP, a fixed number of tasks arrive sequentially, with an n-dimensional value vector revealed upon arrival. Each task is assigned to one of a group of known workers immediately upon arrival, with the reward given by an n-dimensional product-form vector. The objective is to maximize each component of the expected reward vector. We provide expressions for the asymptotic expected reward per task for each component of the reward vector and compare the convergence rates for three classes of Pareto optimal policies.  相似文献   
5.
The sex pheromone of the endoparasitoid insect Xenos peckii (Strepsiptera: Xenidae) was recently identified as (7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal. Herein we report the asymmetric synthesis of three candidate stereostructures for this pheromone using a synthetic strategy that relies on an sp3–sp2 Suzuki–Miyaura coupling to construct the correctly configured C7‐alkene function. Comparison of 1H NMR spectra derived from the candidate stereostructures to that of the natural sex pheromone indicated a relative configuration of (3R*,5S*,9R*). Chiral gas chromatographic (GC) analyses of these compounds supported an assignment of (3R,5S,9R) for the natural product. Furthermore, in a 16‐replicate field experiment, traps baited with the synthetic (3R,5S,9R)‐enantiomer alone or in combination with the (3S,5R,9S)‐enantiomer captured 23 and 18 X. peckii males, respectively (mean±SE: 1.4±0.33 and 1.1±0.39), whereas traps baited with the synthetic (3S,5R,9S)‐enantiomer or a solvent control yielded no captures of males. These strong field trapping data, in combination with spectroscopic and chiral GC data, unambiguously demonstrate that (3R,5S,9R,7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal is the X. peckii sex pheromone.  相似文献   
6.
Here we describe the story behind the link between molecular chirality and macroscopic phenomena, the latter being a probe for the direct assignment of absolute configuration of chiral molecules. First, a brief tour of the history of molecular stereochemistry, starting with the classic experiment reported by Pasteur in 1848 on the separation of enantiomorphous crystals of a salt of tartaric acid, and his conclusion that the molecules of life are chiral of single-handedness. With time, this study raised, inter alia, two fundamental questions: the absolute configuration of chiral molecules and how a molecule of given configuration shapes the enantiomorphous morphology of its crystal. As for the first question, following the beginning of crystal structure determination by X-ray diffraction in 1912, it took almost 40 years before Bijvoet assigned molecular chirality through the esoteric method involving anomalous X-ray scattering. We have been able to address and link both questions through ‘everyday concepts of left and right’ (in the words of Jack Dunitz) by the use of ‘tailor-made’ auxiliaries. By such means, it proved possible to reveal, through morphology, etch patterns, epitaxy and symmetry reduction of both chiral and, paradoxically, centrosymmetric crystals, the basic chiral symmetry of the molecules of life, the α-amino acids and sugars.  相似文献   
7.
Dictamdiol的1H NMR 和13C NMR数据全归属   总被引:1,自引:0,他引:1  
姜勇  屠鹏飞  张娜 《波谱学杂志》2006,23(3):327-332
通过二维核磁技术,尤其是HMBC、HMQC和NOESY实验对一个从白鲜皮中分离得到的柠檬苦素类化合物-dictamdiol的1H NMR 和13C NMR数据进行了全归属,并对文献中归属的错误进行了纠正.  相似文献   
8.
An automated NMR chemical shift assignment algorithm was developed using multi-objective optimization techniques. The problem is modeled as a combinatorial optimization problem and its objective parameters are defined separately in different score functions. Some of the heuristic approaches of evolutionary optimization are employed in this problem model. Both, a conventional genetic algorithm and multi-objective methods, i.e., the non-dominated sorting genetic algorithms II and III (NSGA2 and NSGA3), are applied to the problem. The multi-objective approaches consider each objective parameter separately, whereas the genetic algorithm followed a conventional way, where all objectives are combined in one score function. Several improvement steps and repetitions on these algorithms are performed and their combinations are also created as a hyper-heuristic approach to the problem. Additionally, a hill-climbing algorithm is also applied after the evolutionary algorithm steps. The algorithms are tested on several different datasets with a set of 11 commonly used spectra. The test results showed that our algorithm could assign both sidechain and backbone atoms fully automatically without any manual interactions. Our approaches could provide around a 65% success rate and could assign some of the atoms that could not be assigned by other methods.  相似文献   
9.
For forensic and population genetic purposes, a total of 125 unrelated volunteers’ blood samples were collected from Chinese Bai ethnic minority group to analyze sequence variation of two hypervariable segments (HVS‐I and HVS‐II) in the mitochondrial DNA control region. Comparing the HVS‐I and HVS‐II sequences of the 125 Chinese Bais to the Anderson reference sequence, we found 86 polymorphic loci in HVS‐I and 40 in HVS‐II in mitochondrial DNA sequences of the Chinese Bai ethnic minority group, which defined 93 and 53 different haplotypes, respectively. Haplotype diversity and the mean pairwise differences were 0.992 ± 0.003 and 6.553 in HVS‐I, and 0.877 ± 0.027 and 2.407 in HVS‐II, respectively. We defined four macrohaplogroups R, M, N and D with the proportions ranging from 9.6% to 40.0%. With the analysis of the hypervariable domain from nucleotide 16 180–16 193 in HVS‐I, our study revealed new haplotypes of sequence variations. In addition, the Fst metric, phylogenetic tree, and principal component analysis demonstrated a close genetic relationship between the Bai group and Chinese Han populations from South China, Changsha, and Guangdong. The results support that the Bai group is a multiorigin ethnic minority that has merged with the Chinese Han population.  相似文献   
10.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号