首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  国内免费   1篇
物理学   15篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2008年   8篇
  2007年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 140 毫秒
1.
We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where the wave functions begin to overlap, the mechanism considered here involves only the long-range dipole interaction and is in principle possible in a static system. It is related to the process of intermolecular Coulombic decay (ICD). In addition, we include the interaction-induced motion of the atoms and the effect of multi-particle systems in this work. We find that the probability for this ionization mechanism can be increased in many-particle systems featuring attractive or repulsive van der Waals interactions. However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that this process contributes to the autoionization of Rydberg gases in the form presented here, but it may still act as a trigger for secondary ionization processes. As our picture involves only binary interactions, it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of more complex systems, such as the coupling of many pair states proposed in [P.J. Tanner et al., Phys. Rev. Lett. 100, 043002 (2008)].  相似文献   
2.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   
3.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1<Γ?Γc) where Γ is the Coulomb coupling parameter and Γc is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.  相似文献   
4.
The initial single pion emission (ISPE) mechanism is applied to the processes r(5S)→πB(*)B-(*), whose details have been recently reported at ICHEP2012, and we obtain reasonable agreement with Bell's measurements; that is, we succeed in reproducing the enhancement structures of Zb(10610) and Zb(10650). Inspired by this success, we also predict the corresponding enhancement structures in open charm oue-pion decays of higher charmonia near the thresholds of D*D- and D*D-*.  相似文献   
5.
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0ω/k<0 are identified as signatures of dust–dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.  相似文献   
6.
Belle实验组利用在?(5S)共振峰上采集的大数据样本,对e+e-→π+π-?(nS)和π+π-hb (mP)(n=1,2,3,m=1,2)过程进行了研究,在π±?(nS)和π±hb(mP)的系统中,同时观测到了两个新的带电类底偶素结构——Zb(10610)和Zb(10650)。它们衰变到底偶素末态,同时还带有电荷,所以它们的组成成份中至少含有4个夸克。最近,对e+e-→π+π-π0γ?(1S)过程也进行了研究,在ω?(1S)系统中对类X(3872)的底偶素态Xb进行了寻找。  相似文献   
7.
The nonlinear propagation of ultra-low-frequency dust-acoustic (DA) waves in a strongly coupled cryogenic dusty plasma has been investigated, by using the Boltzmann distributed electrons and ions, as well as modified hydrodynamic equations for strongly coupled charged dust grains. The reductive perturbation technique is used to derive the Burger equation. It is shown that strong correlations among negatively charged dust particles acts like a dissipation, which is responsible for the formation of the DA shock waves. The latter are associated with the negative potential, i.e. with the compression of negatively charged cryogenic dust particle density. It is also found that the effective dust-temperature, which arises from electrostatic interactions among negatively charged dust particles, significantly affects the height of the DA shock structures. New laboratory experiments at cryogenic temperature should be conducted to verify our theoretical prediction.  相似文献   
8.
A theoretical investigation has been made of ultra-low-frequency dust-electrostatic and dust-electromagnetic modes, propagating perpendicular to the external magnetic field, in a self-gravitating, warm, magnetized, two fluid dusty plasma system. It has been shown that the effects of self-gravitational field and dust thermal pressure significantly modify the dispersion properties of these ultra-low-frequency dust-modes. It is also found that under certain conditions, the self-gravitational effect can destabilize these ultra-low-frequency dust-electrostatic and dust-electromagnetic modes. However, the effects of the external magnetic field and dust and ion thermal pressures are found to play stabilizing role, i.e., these effects make these modes stable and counter the gravitational condensation of the dust grains. The implications of these results to some space and astrophysical dusty plasma systems, especially, to planetary ring-systems and cometary tails, are briefly mentioned. Received 16 December 1999  相似文献   
9.
Total and partial photoionization cross sections for (Fe XXI+hν→Fe XXII+e) are presented for the ground and excited bound states with n?10 and l?9. Fe XXI is prevalent in high-temperature astrophysical plasmas as well as in photoionized plasmas excited by hard X-rays. Results are reported for the first time for the high-energy photoionization with core excitations to n=2,3 states. Details of photoionization, especially the high-energy features that often dominate considerably over the low energy ones, are illustrated. These prominent features will affect the photoionization and the recombination rates in high-temperature plasmas. Calculations are carried out in the close coupling (CC) approximation using the R-matrix method. A large CC wavefunction expansion for Fe XXII which includes the ground and 28 excited core states from n=2 and 3 complexes and spans over a wide energy range is used. A total of 835 discrete bound states of Fe XXI in the singlet, triplet, and quintet symmetries are obtained. Total photoionization cross sections, σPI(nLS), for ionization into all 29 states are presented for all 835 final bound states and partial photoionization cross sections, σPI(g,nLS), for ionization into the ground 2P0 state of the core are presented for 685 states. While the n=2 core excitations are at relatively lower energy range (within 15 Ry from the ionization threshold), the n=3 excitations lie at considerably higher energy, 73 Ry and above, yet introduce resonant features and enhancements more prominent than those of n=2 states. Larger numbers of resonances are formed due to Rydberg series of autoionizing states converging on to the 29 core states. However, most noticeable structures are formed in the excited state cross sections by the photoexcitation-of-core (PEC) resonances in the photon energy range of 73-82 Ry. All these high-energy features are absent in the currently available results. The present results should enable more accurate modeling of the emission spectrum of highly excited plasma from the optical to far-ultraviolet region.  相似文献   
10.
Results for electron-ion recombination and photoionization of , with emphasis in high-temperature region, are presented from ab initio unified method. The unified method, based on close coupling (CC) approximation and R-matrix method, (i) subsumes both the radiative recombination (RR) and dielectronic recombination (DR), (ii) enables self-consistent sets of photoionization and recombination cross sections from using an identical wavefunction for both the processes, and (iii) provides state-specific recombination rates of a large number of bound states. A large CC wavefunction expansion, which includes the ground and 28 core excitations of n=2 and 3 complexes and span a wide energy range, has been used. Compared to Δn=2-2, Δn=2-3 core excitations are found to introduce strong resonant structures and enhance the background photoionization cross sections (σPI) in the high-energy region. These features along with prominent photoexcitation-of-core (PEC) resonances at n=3 core thresholds have increased the unified total recombination rate coefficients (αR(T)) at temperatures , region of maximum abundance of the ion in collisional equilibrium, by a factor of 1.6 over previous calculations. State-specific recombination rate coefficients αR(nLS), which include both the RR and DR, are presented for the first time for 685 bound states with n?10 and l?9. The unified total recombination rate with photoelectron energy αR(E) is presented and the role of low-energy near-threshold fine structure resonances is illustrated. The present results should provide a reasonably complete self-consistent set of recombination rates and photoionization cross sections for astrophysical modelings of high-temperature plasmas from optical to far-ultraviolet wavelength regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号