首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
力学   1篇
物理学   2篇
  2014年   1篇
  2007年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
We present an overview of the diagnostic methods used in shock-tube investigations of mixing induced by Richtmyer–Meshkov instability. The different diagnostic techniques are first briefly presented, and then reviewed in a simple single table, which lists their advantages and disadvantages, their technological characteristics and domain of validity, the physical parameters measured, the laboratory in which they were developed and an assessment of their mean cost. Received 19 November 1997 / Accepted 3 March 1998  相似文献   
2.
The present work addresses the soot formation parameters behind reflected shock waves and the identification of adsorbed species on their surface. Soot induction delay times and yields have been experimentally determined in the case of toluene pyrolysis highly diluted in argon for the following conditions: the initial carbon atoms concentration was kept constant around 1 × 1018 C atoms cm−3, reflected shock pressure and temperature ranges of 1135-1600 kPa and 1470-2230 K, respectively. The decrease of the induction time, as the temperature is raised, was described using an Arrhenius type expression while, for the bell-shaped evolution of the soot yield versus the temperature, a modified Gaussian expression was derived. Using TEM analysis, the mean particle diameter was found to decrease from 35 to 20 nm as the temperature is raised from 1475 to 2135 K. The micro-texture of the soot sample was found to vary as the temperature is raised, leading to a more organised structure. The adsorbed species on these soot were characterized using laser desorption/ionization time of flight mass spectrometer. Results indicate that for temperatures below 1600 K, PAHs in the 178-572 atomic mass units (amu) range were identified. PAHs range was limited to 178-374 amu above 1900 K and they were of benzenoid type above 1600 K. The amount of species adsorbed on the soot surface was found to be inversely proportional to the soot yield with a maximum for the lower temperature domain.  相似文献   
3.
The present paper proposes a new characterization technique for air-coupled ultrasound probes. The technique is based on a shock tube to generate a controlled pressure wave to calibrate transducers within their operating frequency range. The aim is to generate a high frequency pressure wave (at least up to 200 kHz) with the low energy levels typical of commonly used air-coupled ultrasound probes. A dedicated shock-tube has been designed and tested to assess calibration performances. The sensor transfer function has been measured by using a pressure transducer as reference.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号