首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学   2篇
力学   1篇
数学   3篇
物理学   23篇
  2023年   4篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
Reconfigurable intelligent surface (RIS), a planar metasurface consisting of a large number of low-cost reflecting elements, has received much attention due to its ability to improve both the spectrum and energy efficiency (EE) by reconfiguring the wireless propagation environment. In this paper, we propose a base station (BS) beamforming and RIS phase shift optimization technique that maximizes the EE of a RIS-aided multiple-input–single-output system. In particular, considering the system circuits’ energy consumption, an EE maximization problem is formulated by jointly optimizing the active beamforming at the BS and the passive beamforming at the RIS, under the constraints of each user’ rate requirement, the BS’s maximal transmit power budget and unit-modulus constraint of the RIS phase shifts. Due to the coupling of optimization variables, this problem is a complex non-convex optimization problem, and it is challenging to solve it directly. To overcome this obstacle, we divide the problem into active and passive beamforming optimization subproblems. For the first subproblem, the active beamforming is given by the maximum ratio transmission optimal strategy. For the second subproblem, the optimal phase shift matrix at the RIS is obtained by exploiting sine cosine algorithm (SCA). Moreover, for this case where each reflection element’s working state is controlled by a circuit switch, each reflection element’s switch value is optimized with the aid of particle swarm optimization algorithm. Finally, numerical results verify the effectiveness of our proposed algorithm compared to other algorithms.  相似文献   
2.
In this paper, a new non-orthogonal multiple access (NOMA) scheme is proposed for the reconfigurable intelligent surface (RIS) assisted high-capacity visible light communication (VLC) system, which is named hybrid domain multiple access (HDMA). HDMA enjoys the benefit of hybrid-domain signals, including the power domain, code domain, and frequency domain, where the message passing algorithm (MPA) and successive interference cancellation (SIC) detectors are jointly used at the HDMA receiver. Furthermore, to achieve a higher communication capacity for the VLC system, we proposed an optimization model by jointly optimizing the power allocation ratio and RIS reflection units. The simulation results verified the proposed scheme. By comparing the system capacity of different RIS allocation schemes and multiple access methods, the VLC system based on HDMA proposed in this paper can significantly improve its communication capacity.  相似文献   
3.
In the last decades, microrobotics has attracted much attention of researchers due to the unique characteristics of shapes, propulsion mechanisms, and potential applications in the biomedical field. Recently, the research of microrobots has shifted to soft microrobots owing to their softness, elasticity and reconfigurability benefiting to interact with the complex channels in the human body compared to their rigid counterparts. There is significant progress on soft microswimmers and that encourages us to review this field timely to promote the development. In this review, we mainly highlight the progress of the soft microswimmers in recent years. The materials with softness, deformability and shape-morphing characteristics are surveyed as well as biocompatibility, followed by standard fabrication methods. Additionally, the locomotion based on self-propelled and external-field-driven mechanisms has been compared and discussed. Finally, the biomedical applications in imaging, targeted drug delivery and therapy, and microsurgery are highlighted followed by addressing the perspectives.  相似文献   
4.
Precise surface functionalization and reconfigurable capability of nanomaterials are essential to construct complex nanostructures with specific functions.Here we show tire assembly of a reconfigurable plasmonic nanostructure,which executes both conformational and plasmonic changes in response to DNA strands.In this work,different sized gold nanoparticles(AuNPs)were arranged site-specifically on the surface of a DNA origami clamp nanostructure.The opening and closing of the DNA origami clamp could be precisely controlled by a series of strand emplacement reactions.Therefore,the patterns of these AuNPs could be switched between two different configura-tions.The observed plasmon band shift indicates the change of the plasmonic interactions among the assembled AuNPs.Our study achieves the construction of reconfigurable nanomaterials with tunable plasmonic interactions,and will enrich the toolbox of DNA-based functional nanomachinery.  相似文献   
5.
Wei Hong  Xiaohan Sun 《Optik》2011,122(22):2055-2057
We propose a novel ultra compact structure of micro-disks embedded microring filter (MDEMR) and several parameters which impact the performance of MDEMR are analyzed. The filter is shown to exhibit much smaller size and better spectrum than traditional microring one. The number and radius of the inner disks are found to mainly influence the resonance frequency of the micro-disks, and the valley of transmittivity. The resonance between microring and micro-disks is decrease with increasing the gap between microring and micro-disks, which also leads to the extinction ratio improved significantly. The Q factor is found to be improved from 300 to 3000 with the gap increased from 0.2 μm to 0.4 μm, while the transmission peak affected slightly.  相似文献   
6.
We consider a special case of the directed subgraph homeomorphism or topological minor problem, where the host graph has a specific regular structure. Given an acyclic directed pattern graph, we are looking for a host graph of minimal height which still allows for an embedding. This problem has applications in compiler design for certain coarse-grain reconfigurable architectures. In this application domain, the task is to simultaneously schedule, bind and route a so-called data-flow graph, where vertices represent operations and arcs stand for data dependencies between the operations, given an orthogonal grid structure of reconfigurable processing elements (PEs) that have restricted communication abilities. We show that the problem of simultaneously scheduling, binding and routing is NP-complete by describing a logic engine reduction from NAE-3-SAT. This result holds even when the input graph is a directed tree with maximum indegree two. We also give a |V|3/2-approximation algorithm. J. A. Brenner’s research supported by the DFG Research Center Matheon “Mathematics for key technologies”. J. C. van der Veen’s research supported by DFG Focus Program 1148, “Reconfigurable Architectures”, Grants FE 407/8-1 and FE 407/8-2.  相似文献   
7.
Reconfigurable multi-channel optical power splitter is proposed and its optical properties are calculated. The device can dynamically reconfigure the number of splitting channels by providing programmed refractive index modulations on a multimode interference (MMI) waveguide. A reconfigurable 3-channel optical power splitter is designed to work as 1 × 1, 1 × 2 or 1 × 3 optical power splitter depending on the state of the heat electrodes using thermo-optic modulation, and the input light can be distributed to three output channels with sequential orders. The device can work in the whole C-band (1530-1565 nm) with extinction ratio better than −29.0 dB, excess loss better than −0.45 dB, imbalance better than 0.08 dB and polarization dependent loss (PDL) better than 0.14 dB. The design conception is scalable to a multi-channel splitting-on-demand optical power splitter which can divide input light to 1, 2, …, N output channels equally by using the 3-channel reconfigurable optical power splitter as a building block.  相似文献   
8.
The problem of finding the solution of partial differential equations (PDEs) plays a central role in modeling real world problems. Over the past years, Multigrid solvers have showed their robustness over other techniques, due to its high convergence rate which is independent of the problem size. For this reason, many attempts for exploiting the inherent parallelism of Multigrid have been made to achieve the desired efficiency and scalability of the method. Yet, most efforts fail in this respect due to many factors (time, resources) governed by software implementations. In this paper, we present a hardware implementation of the V-cycle Multigrid method for finding the solution of a 2D-Poisson equation. We use Handel-C to implement our hardware design, which we map onto available field programmable gate arrays (FPGAs). We analyze the implementation performance using the FPGA vendor's tools. We demonstrate the robustness of Multigrid over other similar iterative solvers, such as Jacobi and successive over relaxation (SOR  ), in both hardware and software. We compare our findings with a C++C++ version of each algorithm. The obtained results show better performance when compared to existing software versions.  相似文献   
9.
In this paper, we present a new method based on real-coded Genetic Algorithm (GA) with elitist model for optimal design of a reconfigurable symmetrical dual-beam uniformly spaced linear isotropic antenna array with phase-only control of quantized phase shifters. The problem is to find a common amplitude distribution that will generate a pencil beam with zero phases and a flat-top beam with discrete phases of a six-bit discrete phase shifter, without or with pre-fixing the value of dynamic range ratio (|I max/I min|) of excitation current amplitude distribution equal to or less than five.  相似文献   
10.
In this article, a comparative performance analysis of three (03) different algorithms operating in the control plane of the three (03) varied architectures such as Physically Distributed, Logically Distributed, and Physically Centralized Architecture has been done. The paper also elucidates the working and implementation of the three proposed architectures with suitable block diagram of system model. Besides, in these architecture models OpenFlow (OF) governed various MATLAB components have been designed such as Application Controller, Optical Transport Network Controller, SDOWN Controller, Ethernet switch-1 and 2, ROADM and Wi-Fi access point with suitable interfaces. Pseudo codes of the algorithms operating in above said MATLAB components are duly explained with flowcharts. Mathematical analysis of three different architecture in respect of latency is carried out, and results and discussions with suitable figures have also been represented. The results obtained show that out of three (03) aforesaid architectures the Physical Centralized Architecture has better performance upto 45 Km in terms of Q-factor, SNR, BER, Jitter and Latency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号