首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   15篇
  国内免费   25篇
化学   254篇
晶体学   1篇
力学   16篇
数学   47篇
物理学   741篇
  2023年   7篇
  2022年   24篇
  2021年   26篇
  2020年   11篇
  2019年   36篇
  2018年   36篇
  2017年   44篇
  2016年   53篇
  2015年   50篇
  2014年   63篇
  2013年   48篇
  2012年   63篇
  2011年   72篇
  2010年   54篇
  2009年   83篇
  2008年   69篇
  2007年   100篇
  2006年   61篇
  2005年   36篇
  2004年   30篇
  2003年   13篇
  2002年   17篇
  2001年   12篇
  2000年   11篇
  1999年   14篇
  1998年   8篇
  1997年   9篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1981年   2篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
1.
Visible and near-infrared(VNIR)spectroscopy is an eco-friendly method used for estimating plant nutrient deficiencies.The aim of this study was to investigate the possibility of using VNIR method for estimating Zn content in cherry orchard leaves under field conditions.The study was conducted in 3different locations in Isparta region of Turkey.Fifteen cherry orchards containing normal and Zn deficient plants were chosen,and 60 leaf samples were collected from each location.The reflectance spectra of the leaves were measured with an ASD FieldSpec HandHeld spectroradiometer and a plant probe.The Zn contents of leaf samples were predicted through laboratory analysis.The spectral reflectance measurements were used to estimate the Zn levels using stepwise multiple linear regression analysis method.Prediction models were created using the highest coefficient of determination value.The results show that Zn content of cherry trees can be estimated using the VNIR spectroscopic method(87.5相似文献   
2.
Visible and Near Infrared (Vis–NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer–Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis–NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer–Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84–0.97 for powdered samples.  相似文献   
3.
The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named “consensus SPA-MLR” (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques.  相似文献   
4.
Near infrared spectroscopy is an overtone spectroscopy regarded as a quick and non-destructive method that provides analytical solutions for components that represent approximately 1% or more of the total mass of the investigated composite samples. Aquaphotomics offers the possibility for disentanglement of information remaining hidden in the spectra when conventional data evaluation methods are used, since this concept utilizes changes of the water structure induced by the measured solute as specific molecular vibrations at water bands. Here, near infrared technique and aquaphotomics are applied for non-destructive identification and quantification of mono- and di-saccharide solutes at 100–0.02 mM concentration that is accepted as unachievable with near infrared spectroscopy. The results presented in this study support the aquaphotomics' water molecular mirror concept that explores spectral changes related to water molecular rearrangements caused by minute changes of the solutes in the aqueous systems. The method provides quick and accurate alternative for classical analytical measurements of saccharides even at millimolar concentration levels.  相似文献   
5.
The interband and intraband radiation from the n-InGaAs/GaAs heterostructures with the double and triple tunnel coupled and selectively doped quantum wells (QWs), which is appeared under the lateral electric field and in the presence of hole injection from the anode contact, has been investigated. A steep increase of the interband radiation intensity was found at the fields of E≥1.7 kV/cm. This effect should be related to the big lifetime of the injected charge carriers (~10−6 s) which exceeds by three orders of magnitude the lifetime in the similar bulk direct-band semiconductor. Its reason lies in spatial separation of the injected holes and electrons between coupled wells, firstly, by the built-in transverse electric field between wells and, secondly, due to the real-space transfer of carriers heated by the lateral electric field from the wide well to the narrow δ-doped one. Furthermore, an increase of the carrier concentration due to injection leads to an increase of that transition intensity and, consequently, to an intensity increase of the radiative intersubband transitions of carriers in QWs which results in a steep intensity increase of the far (50–120 µm) infrared radiation.  相似文献   
6.
Take the cores and surface weathered soil from the Cretaceous red beds in the western of Dongshengmiao mine of Inner Mongolia and analysis with near-infrared spectroscopy. The result shows that near-infrared spectroscopy can identify mineral quickly through the characteristic absorption peaks of each group. The Cretaceous red beds in the western of Dongshengmiao mine is argillaceous cementation, it is mainly composed of quartz, feldspar, montmorillonite, illite, chlorite, muscovite etc, the mineral composition is mainly affected by the upstream source area. The clay mineral like montmorillonite water swelling and uneven drying shrinkage expands the original crack and creates new cracks, reduces its strength, which is the mainly reason of its disintegration. According to the composition of clay mineral, we speculate its weathering process is mainly physical weathering, the climate during the weathering is cold and dry. The results can not only improve the geological feature of the mining area, but also show that the near-infrared spectroscopy technology can analyze the mineral composition of soil and rock effectively on the basis of Mineral spectroscopy, which demonstrates the feasibility of the near-infrared spectroscopy can analyze minerals in soil and rock quickly, that shows the feasibility in geology study, provides new ideas for the future research of soil and rock.  相似文献   
7.
This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum(NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100-4 500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction(RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares(PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two components were 8 in the model. The performance of the model was evaluated according to root mean square error of cross-validation (RMSECV) 9 root mean square error of prediction (RMSEP). In the model, RESECV of linalool and linalyl acetate were 0.170 and 0.416, respectively; RMSEP were 0.188 and 0.364. The results indicated that raw data was pretreated by OSC and FiPLS, the NIR-PLS quantitative analysis model with good robustness, high measurement precision; it could quickly determine the content of linalool and linalyl acetate in lavender essential oil. In addition, the model has a favorable prediction ability. The study also provide a new effective method which could rapid quantitative analysis the major components of Xinjiang lavender essential oil.  相似文献   
8.
Near-wall data for the strongly perturbed flow in a neutrally stable boundary layer encountering a steep, smooth, two-dimensional hill are presented. Observations were made on the centerplane of a water channel at thirteen stations relative to the hill by laser Doppler anemometry. The large reverse flow region that is formed on the lee of the hill was particularly scrutinized through seven measuring stations. Results are presented for the mean and turbulent properties of the flow. Wall shear stress was evaluated through fitting procedures that resorted to the near wall behavior of the velocity profile. Logarithmic fits as well as predictions through the Reynolds stress profiles are also presented.  相似文献   
9.
近红外光谱检测已被应用于水泥生料成分的快速检测,但现场环境中的湿度等因素会对光谱产生干扰,从而降低检测精度。为了提高检测精度,在实验分析湿度对水泥生料近红外光谱检测影响的基础上研究了补偿方法。在水泥厂选取了24份水泥生料样本,其中18份作为校正集,6份作为验证集;水泥生料中的有效成分为SiO2,Al2O3,Fe2O3和CaCO3,各成分含量的标准值由X射线荧光光谱分析测出。首先,将校正集的18份样本每份重复装样测5次光谱,用得到的90个光谱建立模型Ⅰ;再每份样品制作5个湿度梯度样本,其获得过程为,先将样本放置在电加热平台上,用玻璃棒将样本摊平,180℃下加热30 min,再将样本放置在散热片上进行降温,待样品恢复室温后取出进行第一次光谱扫描,得到1个光谱,将测量后的样本放入搅拌器,使用装有去离子水的喷雾器对其喷雾两次,然后搅拌30 s混合均匀,测量混合后的样本得到下一个光谱,重复该过程,得到具有湿度梯度的5个光谱。所有样本均采用烘干法进行湿度测量,样本湿度变化区间在0.6%~2%以内。对每个湿度梯度的样本测量1次,用得到的这90个光谱建立模型Ⅱ。然后,将验证集的6份样本每份制作5个湿度梯度,获取方式与校正集相同,对每个湿度梯度的样本测量1次,得到30个光谱。所有光谱均采用多元散射校正预处理,拟合波段选择4000~5000 cm^-1,建模方法采用偏最小二乘法。比较同一份样本的5个湿度梯度,可以看到在5200 cm^-1处光谱差异最大,在其他位置也有肉眼可见的明显差异,因此,湿度变化对全波段光谱有明显的影响。最后,将这30个光谱输入模型Ⅰ与模型Ⅱ进行验证,并对比模型Ⅰ与模型Ⅱ的预测均方根误差RMSEP。模型Ⅱ中SiO2,Al2O3,Fe2O3和CaCO3的预测均方根误差RMSEP比模型Ⅰ分别减小了25%,31.3%,33.3%和25%。实验结果表明,水泥生料样本湿度对近红外光谱模型的预测结果具有一定的影响,采用具有湿度梯度的样本进行建模可有效降低湿度对预测结果的影响。  相似文献   
10.
果酒发酵中的多酚是引起果酒口感、颜色变化的重要因素。为保证果酒品质,有必要开发一种快速监测发酵过程中多酚含量变化的技术。收集不同批次成熟期的蓝莓、桑葚为原料,分别碾压成汁,同时按比例混合二者,于小型发酵罐进行发酵。通过离线收集不同发酵时段的发酵液于离心管,高速离心后取上清液置于棕色瓶保存,共计得到48个果酒发酵样本。将上清液置于三个平行样比色皿,以傅里叶快速变换近红外光谱仪(FT-NIR)采集其透射光谱,取平均值作为该样本的光谱信号。然后将棕色瓶内的发酵液以国标法(即以标准液的吸光度值制定标准曲线)测定各样品的总酚含量,以duplex法计算样本光谱之间的距离且按2∶1的比例划分为训练集和预测集。采用间隔偏最小二乘法(iPLS)将训练集样本的透射光谱与总酚含量之间构建定量模型,间隔数从2依次变化到60个。该研究创新之处是使用共识方法融合多个已构建好的iPLS成员模型,按一定的共识规则分配权系数。通过各成员模型交互验证的残差及其残差之间的相关性来优化各成员模型的线性组合,以拉格朗日乘数法求解各成员模型的权系数,使间隔偏最小二乘-共识模型(consensual iPLS,CiPLS)的交互验证均方根误差最小。相比于全局PLS模型、划分不同间隔数量时的iPLS模型,CiPLS均具有较小的预测误差。当划分39个间隔时由三个iPLS成员模型(即14th,16th,18th)组成的共识模型误差最小为124.2,交互验证相关系数为0.944,对预测集样本的预测均方根误差为163.4,预测相关系数为0.931,预测性能均优于PLS和iPLS模型。另外,作为对比选用连续投影算法与无信息变量剔除法来优化光谱模型,其预测性能均不及本文提出的共识模型。分析各iPLS模型预测残差之间的相关性,发现共识模型主要是融合那些具有较高预测性能且模型间较低相关性的成员模型。结果表明,光谱分析结合共识方法可提高回归模型的预测精度、减少建模所需变量数,能够用于果酒总酚含量的离线快速检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号