首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  国内免费   6篇
化学   20篇
物理学   24篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有44条查询结果,搜索用时 360 毫秒
1.
A new Mn(II) coordination polymer, [Mn (L1)2(NCS)2]n (1) [L1 = 3,4-bis(4-pyridyl)-5-(2-pyridyl)-1,2,4-triazole] was synthesized by the reaction of ligand L1 and mixtures of manganese(II) acetate and potassium thiocyanate using the heat gradient method. Compound 1 has been characterized by IR spectroscopy, elemental analyses and X-ray crystallography. The crystal structure of compound 1 was determined by single-crystal X-ray diffraction and shows a new interesting one-dimensional coordination polymer. Nanostructures of compound 1 have been synthesized by sonochemical method. The products were characterized by X-ray powder diffraction, scanning electron microscopy (SEM), and IR spectroscopy. The thermal stability of nano particles of compound 1 was studied by thermal gravimetric and differential thermal analyses.  相似文献   
2.
Y.L. Wu  Z. Chen 《Applied Surface Science》2008,254(21):6952-6958
It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.  相似文献   
3.
Three zinc(II) nitrite coordination polymers, [Zn(4-bpdb)(NO2)2]n (1), {[Zn(3-bpdb)(NO2)]·0.5H2O}n (2) and [Zn(3-bpdh)(NO2)2]n (3), 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene and 3-bpdh = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene} were prepared and characterized by elemental analyses and IR spectroscopy. Compound 3 was structurally characterized by single-crystal X-ray diffraction and is one-dimensional polymer with coordination environments of distorted octahedral, ZnN2O4. The thermal stabilities of compounds 1–3 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Direct calcination of the compounds 1–3 at 600 °C under air atmospheres yields different morphologies of nano-sized ZnO.  相似文献   
4.
A new nano-sized Pb(II) one-dimensional coordination polymer with η2 Pb-C interactions, [Pb23-ba)22-ba)2]n (1) [ba = benzylacetylacetonate] has been synthesized and characterized by SEM, X-ray powder diffraction, IR spectroscopy and elemental analyses. Single-crystal X-ray diffraction shows the coordination number of Pb(II) ions is seven and the lead atoms have hemidirected coordination sphere containing involving Pb?C interactions, C2O7Pb. PbO nanoparticles were obtained by calcinations of the nano-sized compound 1 at 600 °C.  相似文献   
5.
《Ultrasonics sonochemistry》2014,21(4):1430-1434
Nano-structures of the Cu(II) metal–organic framework, {Cu(BDT)(DMF)·CH3OH·0.25DMF}n (1), which BDT2− is 1,4-benzeneditetrazolate, have been synthesized by the reaction of H2BDT with Cu(NO3)2·6H2O via ultrasonic irradiation in three different temperatures, which causes different morphologies. The products were characterized by IR spectroscopy, elemental analysis, scanning electron microscopy and X-ray powder diffraction. This study demonstrates that sonochemistry is a suitable method for preparation of metal–organic framework nano-structures and temperature is an effective parameter on morphologies of Cu(II) metal–organic framework nano-structures.  相似文献   
6.
Nanoparticles of a three-dimensional supramolecular, [Cu(L)2(H2O)2] (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA) and compared each other. Concentration of initial reagents effects on size and morphology of nano-structured compound 1, have been studied. Calcination of the nano-sized compound 1 at 600 °C under air atmosphere yields CuO nanoparticles.  相似文献   
7.
New structure phenomena with the grain sizes of 60 nm to 1 μm would be expected on the stainless steel surface by Nd:YAG pulsed laser irradiation. Nano-structures with various shapes and sizes were formed mainly during the solidification and most shapes of particles were diversiform according to different distances from the center of the spot. The morphologies were of equiaxed nano-particles and faceted hexagons. The surface re-solidification velocities have been estimated according to the numeral simulation of the thermal conditions. It was proved by the XRD that they were mainly consisted of γ-Fe and manganese oxides. The XPS results confirmed the EDS results that on the surface the alloy elemental composition in the outermost layer were rich in Mn and poor in Fe and in reverse in the center of the laser spot. Through observation of morphologies grown on the laser irradiated surfaces, direct evidence of growth mode transition from a continuous form to a lateral form was provided in one laser spot.  相似文献   
8.
Nano-structures of two new Pb(II) three-dimensional coordination polymers, [Pb2(4-pyc)2I2(H2O)]n (1), {4-Hpyc = 4-pyridinecarboxilic acid} and [Pb(3-pyc)I]n (2), {3-Hpyc = 3-pyridinecarboxilic acid} were synthesized by sonochemical method. The new nano-structures were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compounds 1 and 2 were structurally characterized by single crystal X-ray diffraction and are three-dimensional coordination polymers. The thermal stability of compounds 1 and 2 both their bulk and nano-size were studied by thermal gravimetric and differential thermal analyses and compared. PbO block-structures were obtained by calcination of the nano-structures of compounds 1 and 2 at 400 °C.  相似文献   
9.
Straw-like nano-structure of a new mixed-ligand Zn(II) two-dimensional coordination polymer, {[Zn(μ-4,4′-bipy)(μ-3-bpdb)(H2O)2](ClO4)2·4,4′-bipy·3-bpdb·H2O}n (1) {4,4′-bipy = 4,4′-bipyridine and 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene}, was synthesized by a sonochemical method. The new nano-structure was characterised by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compound 1 was structurally characterised by single crystal X-ray diffraction and consists of two-dimensional polymeric units. ZnO nanoparticles were obtained by calcination of compound 1 at 500 °C under air atmosphere and were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   
10.
Nano-particles of a new 2-D Pb(II) coordination polymer, [Pb(4-pyc)(Br)(H2O)] n (1) (4-Hpyc = 4-pyridinecarboxylic acid), were synthesized by a sonochemical method. Crystal structure of 1 was determined by X-ray crystallography. The nano-particles were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy, and elemental analyses. PbBr(OH) nano-structure was obtained by the calcination of nano-particles of 1 at 400°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号