首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   21篇
化学   4篇
物理学   111篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   4篇
  2009年   23篇
  2008年   30篇
  2007年   10篇
  2006年   8篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   14篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
Off-axial contribution of beam self-focusing in plasma with density ripple is investigated. Apply paraxial ray theory and Wentzel–Krammers–Brillouin approximation, the results shown that, in interaction of laser and plasma with density ripple, beam self-focusing presents some interesting diverse features when off-axial contribution is obvious. In the paper, we find, on the one hand, density ripple can minimize the defocusing and beam still retains a localized profile with an oscillatory self-focusing and defocusing, on the other hand, with the increase of off-axial contribution, laser beams presents four various self-focusing features, which laser beam intensity profile splits into three-splitted with central axial convex profile, three-splitted with equal amplitude profile, three-splitted with central axial concave profile and two-splitted intensity profile.  相似文献   
2.
Theoretical investigation on the propagation of ion-acoustic waves in an unmagnetized self-gravitating plasma has been made for the existence of solitary waves using the reductive perturbation method. It is observed that nonlinear excitations follow a coupled third-order partial differential equation which is slightly different from the usual case of coupled Korteweg-de Vries (K-dV) system. It appears that the system so deduced is a two-component generalization of the previous one derived by Paul et al. (1999) in which it was shown that ion-acoustic solitary waves can not exist in such system.  相似文献   
3.
This paper is devoted to the study of the interaction of particles with two beating plasma waves. We follow the instructional article by Ott and Dum. According to them, the sum of wave actions during the interaction is constant, supposing the effect of trapped particles on the beat can be neglected. In the present paper, this problem is solved more generally, just for the case of trapped and also untrapped particles in the wave. Our study shows that the sum of wave actions is constant also in the case when the influence of the trapped particles on the amplitudes of two waves was considered. On the contrary this conclusion is not valid if it is supposed that two original waves are amplitude modulated e.g. by the influence of the interaction of the beat with particles. The author is deeply indebted to Dr. Ladislav Krlín for guidance and encouragement throughout the course of this work.  相似文献   
4.
An investigation to deepen the connection between the family of nonlinear Schr?dinger equations and the one of Korteweg-de Vries equations is carried out within the context of the Madelung's fluid picture. In particular, under suitable hypothesis for the current velocity, it is proven that the cubic nonlinear Schr?dinger equation, whose solution is a complex wave function, can be put in correspondence with the standard Korteweg-de Vries equation, is such a way that the soliton solutions of the latter are the squared modulus of the envelope soliton solution of the former. Under suitable physical hypothesis for the current velocity, this correspondence allows us to find envelope soliton solutions of the cubic nonlinear Schr?dinger equation, starting from the soliton solutions of the associated Korteweg-de Vries equation. In particular, in the case of constant current velocities, the solitary waves have the amplitude independent of the envelope velocity (which coincides with the constant current velocity). They are bright or dark envelope solitons and have a phase linearly depending both on space and on time coordinates. In the case of an arbitrarily large stationary-profile perturbation of the current velocity, envelope solitons are grey or dark and they relate the velocity u0 with the amplitude; in fact, they exist for a limited range of velocities and have a phase nonlinearly depending on the combined variable x-u0 s (s being a time-like variable). This novel method in solving the nonlinear Schr?dinger equation starting from the Korteweg-de Vries equation give new insights and represents an alternative key of reading of the dark/grey envelope solitons based on the fluid language. Moreover, a comparison between the solutions found in the present paper and the ones already known in literature is also presented. Received 20 February 2002 and Received in final form 22 April 2002 Published online 6 June 2002  相似文献   
5.
The modulation of an intense electromagnetic beam induced by the acousto-optic (AO) effect has been analysed in a transversely magnetised semiconductor-plasma medium. The effect of carrier diffusion on the threshold field and gain profile of the modulated wave has been extremely investigated using coupled mode theory. The origin of the AO interaction is assumed to lie in the induced nonlinear diffusion current density of the medium. By considering the modulation process as a four wave parametric interaction an expression for effective third-order AO susceptibility describing the phenomena has been deduced. The modulation is greatly modified by propagation characteristics such as dispersion and diffraction due to dielectric relaxation of the acoustic mode. The threshold pump field and the steady state growth rates are estimated from the effective third-order polarisation in the plasma medium. Analytical estimation reveals that in the presence of enhanced diffusion due to excess charge carriers the modulated beam can be effectively amplified in a dispersionless acoustic wave regime. The presence of an external dc magnetic field is found to be favourable for the onset of diffusion induced modulational amplification of the modulated wave in heavily doped regime. Received 5 November 2001  相似文献   
6.
Spiral patterns are obtained in a dielectric barrier discharge system with water electrodes. The dynamics of spiral formation and transition is investigated. Wavelength characteristic of spiral patterns is also studied. Correlation measurements indicate that the wavelength of spiral pattern increases with the increasing gas gap width and oscillates with the increasing drive frequency.  相似文献   
7.
We model and discuss the possible types of motion that charged particles may undergo in a stationary and spatially periodic electrostatic potential and a homogeneous magnetic field. The model is considered to be the simplest approximation of more complex phenomena of plasma edge turbulence in tokamaks. Therein, low frequency turbulence appears in the plasma edge, resulting in a fluctuation of the electron density, and also in the generation of a turbulent electrostatic field. Typical parameters of this turbulent electrostatic field are an electrical potential amplitude of 10–100 V and wave numbers k≈103 m-1. In our model, we consider these regimes, together with a homogeneous magnetic field with a magnitude of 1 T. We investigate the dynamics of singly-ionized carbon ions – a typical plasma impurity – with kinetic energies on the order of 10 eV. Besides the obvious Larmor and drift motions, a motion of random-walk and of Lévy walk character appear therein. All of these types of motion can play an important role in the modelling of the anomalous diffusion of particles from the plasma edge turbulence region. The dynamics mentioned will cause an inevitable escape of energetic particles and thus of power loss from the thermonuclear reactor. Moreover, Lévy walk kinetics represents a very interesting kind of kinetics, currently of great interest, which was previously not so often discussed.  相似文献   
8.
A quintic complex Ginzburg-Landau equation is derived from a Landau-Lifshitz-Gilbert equation and is used to describe the magnetization dynamics in a one-dimensional uni-axial ferromagnet. Trough the use of suitable approximations, we derive the magnetic solitary wave excitations solutions which have pulse-like shapes. Subsequent numerical simulations reveal domain wall propagation.  相似文献   
9.
10.
By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates, we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号