首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   3篇
  国内免费   11篇
化学   146篇
晶体学   1篇
力学   5篇
数学   2篇
物理学   126篇
  2023年   49篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   16篇
  2012年   12篇
  2011年   21篇
  2010年   6篇
  2009年   18篇
  2008年   9篇
  2007年   12篇
  2006年   9篇
  2005年   13篇
  2004年   15篇
  2003年   5篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1986年   1篇
  1981年   1篇
排序方式: 共有280条查询结果,搜索用时 46 毫秒
1.
Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample׳s refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.  相似文献   
2.
Combining the experimental research with the simulation calculation, the error evaluation for Zernike polynomials fitting (ZPF) based phase compensation of digital holographic microscopy (DHM) is performed. The obtained results show that the reconstructed phase with high precision can be obtained by ZPF phase compensation algorithm. Moreover, the phase error for ZPF based phase compensation algorithm increases with both the variation of object height and object transverse area, the larger variation of object height, the larger of phase error, and the larger of object transverse area, the faster increase of RMS phase error. To decrease the error of ZPF phase compensation algorithm, it is required to ensure one of the variations of object height and object transverse area to be a small value. Importantly, the proposed method supplies a useful tool for the error evaluation of phase compensation algorithm.  相似文献   
3.
Plasmon-enhanced electrochemiluminescence (ECL) at the single-nanoparticle (NP) level was investigated by ECL microscopy. The Au NPs were assembled into an ordered array, providing a high-throughput platform that can easily locate each NP in sequential characterizations. A strong dependence of ECL intensity on Au NP configurations was observed. We demonstrate for the first time that at the single-particle level, the ECL of Ru(bpy)32+-TPrA was majorly quenched by small Au NPs (<40 nm), while enhanced by large Au ones (>80 nm) due to the localized surface plasmon resonance (LSPR). Notably, the ECL intensity was further increased by the coupling effect of neighboring Au NPs. Finite Difference Time Domain (FDTD) simulations conformed well with the experimental results. This plasmon enhanced ECL microscopy for arrayed single NPs provides a reliable tool for screening electrocatalytic activity at a single particle.  相似文献   
4.
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.  相似文献   
5.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
6.
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.  相似文献   
7.
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).  相似文献   
8.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   
9.
Iron phthalocyanine-based polymers (PFePc) are attractive noble-metal-free candidates for catalyzing oxygen reduction reaction (ORR). However, the low site-exposure degree and poor electrical conductivity of bulk PFePc restricted their practical applications. Herein, laminar PFePc nanosheets covalently and longitudinally linked to graphene (3D-G-PFePc) was prepared. Such structural engineering qualifies 3D-G-PFePc with high site utilization and rapid mass transfer. Thence, 3D-G-PFePc demonstrates efficient ORR performance with a high specific activity of 69.31 μA cm−2, a high mass activity of 81.88 A g−1, and a high turnover frequency of 0.93 e s−1 site−1 at 0.90 V vs. reversible hydrogen electrode in O2-saturated 0.1 M KOH, outperforming the lamellar PFePc wrapped graphene counterpart. Systematic electrochemical analyses integrating variable-frequency square wave voltammetry and in situ scanning electrochemical microscopy further underline the rapid kinetics of 3D-G-PFePc towards ORR.  相似文献   
10.
A modified 2′-deoxycytidine triphosphate derivative ( dCTOTP ) bearing a thiazole orange moiety tethered via an oligoethylene glycol linker was designed and synthesized. The nucleotide was incorporated into DNA by DNA polymerases in vitro as well as in live cells. Upon incorporation of dCTOTP into DNA, the thiazole orange moiety exhibited a fluorescence lifetime that differed significantly from the non-incorporated (i.e. free and non-covalently intercalated) forms of dCTOTP . When dCTOTP was delivered into live U-2 OS cells using a synthetic nucleoside triphosphate transporter, it allowed us to distinguish and monitor cells that were actively synthesizing DNA in real time, from the very first moments after the treatment. We anticipate that this probe could be used to study chromatin organization and dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号