首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   3篇
  国内免费   11篇
化学   108篇
晶体学   2篇
力学   8篇
物理学   108篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   6篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   22篇
  2011年   23篇
  2010年   17篇
  2009年   44篇
  2008年   16篇
  2007年   21篇
  2006年   13篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1995年   3篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
1.
Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles (Fe 3 O 4 :MNPs) have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals (•OH) generated by MNPs-catalyzed degradation of H 2 O 2 converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. In the presence of antioxidants, •OH was partly scavenged by antioxidants and produced less DMPD• + , causing a decrease in the 553 nm-absorbance. Antioxidant concentrations were calculated with the aid of absorbance differences between the reference and sample solutions. The linear working ranges and trolox equivalent antioxidant capacity coefficients of different classes of antioxidants were determined by applying the developed method. In addition, binary and ternary mixtures of antioxidants were tested to observe the additivity of absorbances of mixture constituents. The method was applied to real samples such as orange juice and green tea. Student t-test, F tests, and the Spearman’s rank correlation coefficient were used for statistical comparisons.  相似文献   
2.
《Current Applied Physics》2020,20(6):822-827
Core-shell structured magnetic Fe3O4@glutathione composite nanoparticles were synthesized and examined using diverse methods including Fourier-transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscope, thermogravimetric analysis, and vibrating sample magnetometer analysis. In addition, the nonlinear optical measurements were performed by both open and closed aperture z-scan methods using an aqueous colloidal solution of the fabricated nanoparticles. The colloidal system exhibited a positive nonlinear refractive index because of the self-focusing effect arising from optical re-orientation. Although optical re-orientation is a rare phenomenon in nanocolloids, high polarizability of the enveloping organic ligands caused optical re-orientation of the composite nanoparticles in the electrical field direction of the incident beam. Finally, the effect of external voltage on the nonlinear optical index was further investigated.  相似文献   
3.
The paper shows the application of a new method – Magnetic Nanoparticles Focusing 3D, MNF-3D – for focusing of magnetic nanoparticles at any point in a three-dimensional space between the rotating magnet system. The results of focusing process of nanoparticles in water, human blood, human serum and polyurethane sponge are presented. Additionally, blood flow was also considered. The effectiveness of nanoparticle focusing was monitored optically and quantitatively by electron spin resonance method. The method enabled focusing of magnetic nanoparticles within a few minutes in different environments. A good efficiency of focusing process was observed for all the samples.  相似文献   
4.
Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.  相似文献   
5.
Poly(3-thiophene acetic acid)/Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of poly(3-thiophene acetic acid) (P3TAA). Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA, and conductivity measurements, respectively. The capping of P3TAA around Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the carboxylate and the nanoparticle surface through bidentate binding. The crystallite and particle size were obtained as 9 ± 2 nm and 11 ± 1 nm from XRD line profile fitting and TEM image analysis, respectively, which reveal nearly single crystalline nature of Fe3O4 nanoparticles. Magnetization measurements reveal that P3TAA coated magnetite particles do not saturate at higher fields. There is no coercivity and remanence revealing superparamagnetic character. Magnetic particle size calculated from the theoretical fitting as 9.1 nm which coincides the values determined from TEM micrographs and XRD line profile fitting. The comparison to the TEM particle size reveals slightly modified magnetically dead nanoparticle surface.  相似文献   
6.
表面活性剂碳化法合成Fe3O4/C复合物及其电化学性能   总被引:1,自引:0,他引:1  
以水热法合成的包覆油酸的α-Fe2O3粒子为前驱体, 在氩气下500 °C煅烧1 h, 得到Fe3O4/C纳米复合物. 用傅里叶变换红外(FTIR)光谱, X射线衍射(XRD), 扫描电镜(SEM), X射线能量散射(EDX)谱, 高分辨透射电镜(HRTEM), 元素分析, 循环伏安(CV)和恒流充放电测试等方法对材料的结构、形貌、成分及电化学性能进行了表征. 结果表明: 所制备的Fe3O4/C复合物呈长约200 nm, 粗约100 nm的纺锤形, 表面碳层厚约1-2 nm, 碳含量为1.956%(质量分数); 这种复合物作为锂离子电池负极材料具有很好的循环稳定性(在0.2C (1C=928 mA·g-1)循环80次后具有691.7 mAh·g-1比容量)和倍率性能(在2C循环20次后依然有520 mAh·g-1比容量). 相对于未包覆的商业Fe3O4粒子, 复合物显著提高的电化学性能是由于碳包覆能防止粒子聚集, 提高导电性以及稳定固体电解质界面(SEI)膜.  相似文献   
7.
A simple, fast, efficient, and reusable microwave-assisted tryptic digestion system which was constructed by immobilization of trypsin onto porous core-shell Fe3O4@fTiO2 microspheres has been developed. The nanostructure with magnetic core and titania shell has multiple pore sizes (2.4 and 15.0 nm), high pore volume (0.25 cm3 g−1), and large surface area (50.45 m2 g−1). For the proteins, the system can realize fast and efficient microwave-assisted tryptic digestion. Various standard proteins (e.g., cytochrome c (cyt-c), myoglobin (MYO), β-lactoglobulin (β-LG), and bovine serum albumin (BSA)) used can be digested in 45 s under microwave radiation, and they can be confidently identified by mass spectrometry (MS) analysis; even the concentration of substrate is as low as 5 ng μL−1. Furthermore, the system for the 45 s microwave-assisted tryptic digestion is still effective after the trypsin-immobilized microspheres have been reused for 5 times. Importantly, 1715 unique proteins from 10 μg mouse brain proteins can be identified with high confidence after treatment of 45 s microwave-assisted tryptic digestion.  相似文献   
8.
A novel hybrid nanostructured material comprising superparamagnetic magnetite nanoparticles (MNPs) and pectin was synthesized by crosslinking with Ca2+ ions to form spherical calcium pectinate nanostructures, referred as MCPs, which were typically found to be 100-150 nm in size in dried condition, confirmed from transmission electron microscopy and scanning electron microscopy. The uniform size distribution was revealed from dynamic light scattering measurement. In aqueous medium the MCPs showed swelling behavior with an average size of 400 nm. A mechanism of formation of spherical MCPs is outlined constituting a MNP-pectin interface encapsulated by calcium pectinate at the periphery, by using an array of characterization techniques like zeta potential, thermogravimetry, Fourier transformed infrared and X-ray photoelectron spectroscopy. The MCPs were stable in simulated gastrointestinal fluid and ensured minimal loss of magnetic material. They exhibited superparamagnetic behavior, confirmed from zero field cooled and field cooled profiles and showed high saturation magnetization (Ms) of 46.21 emu/g at 2.5 T and 300 K. Ms decreased with increasing precursor pectin concentrations, attributed to quenching of magnetic moments by formation of a magnetic dead layer on the MNPs.  相似文献   
9.
Tri-layer magnetite/silica/poly(divinylbenzene) (Fe3O4/SiO2/PDVB) core-shell hybrid microspheres were prepared by distillation precipitation polymerization of divinylbenzene (DVB) in the presence of magnetite/3-(methacryloxyl)propyl trimethoxysilane (MPS) modified silica core-shell particles as seeds. The polymerization of DVB was performed in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) as initiator to coat magnetite/MPS-modified silica particles through the capture of DVB oligomers with the aid of vinyl groups on the surface of inorganic seeds in absence of any stabilizer or surfactant. Other magnetite/silica/polymer tri-layer hybrid particles, such as magnetite/silica/poly(ethyleneglycol dimethacrylate) (Fe3O4/SiO2/PEGDMA) and magnetite/silica/poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (Fe3O4/SiO2/P(EGDMA-co-MAA)) with various polarity and functionality, were also prepared by this procedure. Magnetite/silica/poly(N,N′-methylenebisacrylamide-co-methacrylic acid) (Fe3O4/SiO2/P(MBAAm-co-MAA)) were synthesized with unmodified magnetite/silica particles as seeds. The resultant tri-layer hybrid particles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), dynamic light scattering, and vibrating sample magnetometer (VSM).  相似文献   
10.
New silicon magnetite ferrofluids were prepared by dispersing siloxane-coated magnetite particles in polydimethylsiloxane with low or high molecular weights. Ferrofluids are stable colloidal dispersions of ultra fine covered magnetite particles, which may be selected for a specific application. We demonstrated new methods of stabilizing the magnetic particles by reacting the hydroxyl groups on the surface of magnetite particles with terminal ethoxy groups of polydimethylsiloxane, followed by their dispersion in silicon fluids. The new silicon ferrofluids were tested from the morphology, magnetic properties/losses, and rheological properties point of view.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号