首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   4篇
化学   2篇
力学   17篇
数学   97篇
物理学   17篇
  2022年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   11篇
  2007年   16篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   9篇
  2001年   4篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
We present a plane parallel radiative transfer model for polarized light, that provides the intensity vector as well as the derivatives of the four Stokes parameters with respect to atmospheric trace gas profiles. These derivatives are essential for retrieval of height resolved trace gas information from satellite measurements of backscattered sunlight. The model uses the Gauss-Seidel iteration technique for solving the radiative transfer equation. For the first time, the forward-adjoint radiative perturbation theory is applied for the linearization of a radiative transfer model including polarization. The accuracy of the model is better than 0.025% for all four Stokes parameters and better than 0.03% for the derivatives.  相似文献   
2.
The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated single-, double-, and triple-integral representations. Some known or new consequences of the general results presented here, involving such classical orthogonal polynomials as the Jacobi, Laguerre, Hermite, and Bessel polynomials, and various other relatively less familiar hypergeometric polynomials, are also considered. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials.  相似文献   
3.
We present a new linearized model for the zero-one quadratic programming problem, whose size is linear in terms of the number of variables in the original nonlinear problem. Our derivation yields three alternative reformulations, each varying in model size and tightness. We show that our models are at least as tight as the one recently proposed in [7], and examine the theoretical relationship of our models to a standard linearization of the zero-one quadratic programming problem. Finally, we demonstrate the efficacy of solving each of these models on a set of randomly generated test instances.  相似文献   
4.
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated.  相似文献   
5.
Motivated by a search for Lie group structures on groups of Poisson diffeomorphisms, we investigate linearizability of Poisson structures of Poisson groupoids around the unit section. After extending the Lagrangian neighbourhood theorem to the setting of cosymplectic Lie algebroids, we establish that dual integrations of triangular bialgebroids are always linearizable. Additionally, we show that the (non-dual) integration of a triangular Lie bialgebroid is linearizable whenever the r-matrix is of so-called cosymplectic type. The proof relies on the integration of a triangular Lie bialgebroid to a symplectic LA-groupoid, and in the process we define interesting new examples of double Lie algebroids and LA-groupoids. We also show that the product Poisson groupoid can only be linearizable when the Poisson structure on the unit space is regular.  相似文献   
6.
The retrieval of atmospheric constituents from measurements of backscattered light requires a radiative transfer forward model that can simulate both intensities and weighting functions (partial derivatives of intensity with respect to atmospheric parameters being retrieved). The radiative transfer equation is solved in a multi-layer multiply-scattering atmosphere using the discrete ordinate method. In an earlier paper dealing with the upwelling top-of-the-atmosphere radiation field, it was shown that a full internal perturbation analysis of the plane-parallel discrete ordinate solution leads in a natural way to the simultaneous generation of analytically-derived weighting functions with respect to a wide range of atmospheric variables. In the present paper, a more direct approach is used to evaluate explicitly all partial derivatives of the intensity field. A generalization of the post-processing function is developed for the derivation of weighting functions at arbitrary optical depth and stream angles for both upwelling and downwelling directions. Further, a complete treatment is given for the pseudo-spherical approximation of the direct beam attenuation; this is an important extension to the range of viewing geometries encountered in practical radiative transfer applications. The numerical model LIDORT developed for this work is able to generate intensities and weighting functions for a wide range of retrieval scenarios, in addition to the passive remote sensing application from space. We present a number of examples in an atmosphere with O3 absorption in the UV, for satellite (upwelling radiation) and ground-based (downwelling radiation) applications. In particular, we examine the effect of various pseudo-spherical parameterizations on backscatter intensities and weighting functions with respect to O3 volume mixing ratio. In addition, the use of layer-integrated multiple scatter output from the model is shown to be important for satellite instruments with wide-angle off-nadir viewing geometries.  相似文献   
7.
As a continuation of a previous work on linearization of class C1 of diffeomorphisms and flows in infinite dimensions near a fixed point, in this work we deal with the case of a saddle point with some non-resonance restrictions for the linear part. Our result can be seen as an extension of results by Hartman [Boletin de la Sociedad Matematica Mexicana 5(2), 220–241 (1960)] and Aronson, Belitskii and Zhuzhoma [Introduction to the Qualitative Theory of Dynamical systems on surfaces, AMS Transl. Math. Monog. vol.153, pp. 268–277 (1996)] in dimension two. We also present an application to a system of nonlinear wave equations.AMS Subject Classifications: Primary: 35B05, 34G20. Secondary: 35B40, 34D05.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday  相似文献   
8.
In this paper we study smooth classification of hyperbolic vector fields based on their linear approximations only and obtain the following. On Rn, n?5, with only two kinds of exceptions, any two hyperbolic vector fields with generic nonlinear parts and where Ai are n×n matrices, are C1 conjugate to each other if and only if A1 and A2 are strictly similar, and they are C1 orbitally equivalent if and only if A1 and A2 are similar.  相似文献   
9.
In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission.  相似文献   
10.
Integer linear programming (ILP) problems occur frequently in many applications. In practice, alternative optima are useful since they allow the decision maker to choose from multiple solutions without experiencing any deterioration in the objective function. This study proposes a general integer cut to exclude the previous solution and presents an algorithm to identify all alternative optimal solutions of an ILP problem. Numerical examples in real applications are presented to demonstrate the usefulness of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号