首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   58篇
化学   4篇
晶体学   14篇
力学   1篇
数学   1篇
物理学   628篇
  2017年   1篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   15篇
  2009年   97篇
  2008年   134篇
  2007年   98篇
  2006年   108篇
  2005年   11篇
  2004年   14篇
  2003年   22篇
  2002年   24篇
  2001年   19篇
  2000年   17篇
  1999年   19篇
  1998年   23篇
  1997年   11篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
排序方式: 共有648条查询结果,搜索用时 93 毫秒
1.
This paper presents the results of an experimental investigation aimed at verifying some of the interesting conclusions of the numerical study by Jenny et al. concerning the instability and the transition of the motion of solid spheres falling or ascending freely in a Newtonian fluid. The phenomenon is governed by two dimensionsless parameters: the Galileo number G, and the ratio of the density of the spheres to that of the surrounding fluid ρs/ρ. Jenny et al. showed that the (G, ρs/ρ) parameter space may be divided into regions with distinct features of the trajectories followed eventually by the spheres after their release from rest. The characteristics of these ‘regimes of motion’ as described by Jenny et al., agree well with what was observed in our experiments. However, flow visualizations of the wakes of the spheres using a Schlieren optics technique raise doubts about another conclusion of Jenny et al., namely the absence of a bifid wake structure.  相似文献   
2.
Finite-size effects in the self-organized critical forest-fire model   总被引:4,自引:0,他引:4  
We study finite-size effects in the self-organized critical forest-fire model by numerically evaluating the tree density and the fire size distribution. The results show that this model does not display the finite-size scaling seen in conventional critical systems. Rather, the system is composed of relatively homogeneous patches of different tree densities, leading to two qualitatively different types of fires: those that span an entire patch and those that do not. As the system size becomes smaller, the system contains less patches, and finally becomes homogeneous, with large density fluctuations in time. Received 24 April 1999 and Received in final form 26 October 1999  相似文献   
3.
A fabrication process for growth of GaN lateral polarity junctions consisting of Ga-polar and N-polar domains grown simultaneously side-by-side on c-plane sapphire was developed using the polarity control scheme. An ammonia-annealing step following deposition and patterning of a thin low-temperature AlN nucleation layer played a crucial role in avoiding mixed-polarity growth of the remaining AlN nucleation layer, as well as in nitriding the bare sapphire surface to facilitate growth of N-polar GaN. The achievement of both polar domains, free from inversion domains within a contiguous domain, led to Ga-polar domain exhibiting featureless morphology with highly resistive characteristics, while N-polar domains exhibited hexagonally faceted morphology and were highly conductive.  相似文献   
4.
Barium sodium niobate (BSN) optical waveguide films were grown on potassium titanyl phosphate (KTP) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray pole spectroscopy, and X-ray photoelectron spectroscopy (XPS) showed that the as-grown BSN films are epitaxially smooth, fine-particled and show small constituent deviation. Both m lines of the waveguided TE and TM modes were recorded. Lattice match between the BSN(110) and both the KTP(001) and KTP(100) planes is examined with mismatch less than 3%. Effective refractive indices as a function of incident wavelength and order of the waveguided modes are studied. A phase matching relationship of k (1)−2k (0)=0 is established between the first-order and fundamental modes in the BSN/KTP waveguided system. Effective thicknesses for TE and TM modes were obtained to be equal to 0.76 and 0.72 μm, respectively, larger than the thickness of the as-grown BSN film of 0.60 μm. A constituent ratio of Ba:Na:Nb in the BSN film measured was equal to 2:0.82:5.14, slightly deviating from the stoichiometric ratio of 2:1:5, which is attributed to higher relative asymptotic velocity for Nb species and higher evaporation pressure for Na species. Finally, the main factors affecting quality of the as-grown BSN films are also discussed. Received: 26 March 1999 / Accepted: 30 March 1999 / Published online: 19 August 1999  相似文献   
5.
The shear-induced ordering of lamellar and gyroid structures of a nonionic surfactant C16E7/D2O system in a Couette shear cell ( 0.001 < < 10 s-1, : shear rate) has been investigated by using a small angle neutron scattering technique. In the lamellar phase, the steady shear flow having > 0.01 s-1 suppresses undulation fluctuations of lamellae (Maxwell effect). This suppression of fluctuations brings two effects; 1) shear-induced lamellae ordering toward a parallel orientation and 2) obstruction of a lamellar↦gyroid transition. It is quite interesting to note that there is a characteristic shear rate range ( 0.01 < < 0.3 s-1), where both effects take place. We have also investigated the shear effects on the gyroid phase. Below the characteristic shear rate range, the gyroid structure keeps three-dimensional network lattice, while above the characteristic shear rate range, the gyroid structure transforms to the parallel orientation lamellae (shear-induced gyroid-lamellar transition). Thus the shear flow having the characteristic shear rate plays very important roles in shear ordering phenomena. Received 26 June 2000 and Received in final form 12 January 2001  相似文献   
6.
This review provides an overview of recent advances that have been achieved in understanding the basic physics of friction and energy dissipation in molecularly thin adsorbed films and the associated impact on friction at microscopic and macroscopic length scales. Topics covered include a historical overview of the fundamental understanding of macroscopic friction, theoretical treatments of phononic and electronic energy dissipation mechanisms in thin films, and current experimental methods capable of probing such phenomena. Measurements performed on adsorbates sliding in unconfined geometries with the quartz crystal microbalance technique receive particular attention. The final sections review the experimental literature of how measurements of sliding friction in thin films reveal energy dissipation mechanisms and how the results can be linked to film-spreading behavior, lubrication, film phase transitions, superconductivity-dependent friction, and microelectromechanical systems applications. Materials systems reported on include adsorbed films comprised of helium, neon, argon, krypton, xenon, water, oxygen, nitrogen, carbon monoxide, ethane, ethanol, trifluoroethanol, methanol, cyclohexane, ethylene, pentanol, toluene, tricresylphosphate, t-butylphenyl phosphate, benzene, and iodobenzene. Substrates reported on include silver, gold, aluminum, copper, nickel, lead, silicon, graphite, graphene, fullerenes, C60, diamond, carbon, diamond-like carbon, and YBa2Cu3O7, and self-assembled monolayers consisting of tethered polymeric molecules.  相似文献   
7.
Multiple scattering theory based on a cluster model is used to simulate full hemispherical X-ray photoelectron diffraction measurements on a 1T-TaS2(0001) surface. Key points to determine the surface termination are discussed. As the commonly applied single scattering simulations do not give satisfying results, a multiple scattering approach has to be used to accurately simulate the full hemispherical photoelectron diffraction patterns. Differences and similarities between calculations of Ta and S terminated surfaces are presented along with experimental results at room temperature using both, the single and the multiple scattering approaches. We find that the surface is S terminated and that the quantitative difference between the calculations for both terminations permits to show the limits of the single scattering approach for solving surface termination problems. Moreover, by generalizing the results obtained using the multiple scattering approach, we discuss the application of this method to other similar systems.  相似文献   
8.
The three-dimensional bimodal random-field Ising model is studied via a new finite temperature numerical approach. The methods of Wang-Landau sampling and broad histogram are implemented in a unified algorithm by using the N-fold version of the Wang-Landau algorithm. The simulations are performed in dominant energy subspaces, determined by the recently developed critical minimum energy subspace technique. The random-fields are obtained from a bimodal distribution, that is we consider the discrete (±Δ) case and the model is studied on cubic lattices with sizes 4≤L ≤20. In order to extract information for the relevant probability distributions of the specific heat and susceptibility peaks, large samples of random-field realizations are generated. The general aspects of the model's scaling behavior are discussed and the process of averaging finite-size anomalies in random systems is re-examined under the prism of the lack of self-averaging of the specific heat and susceptibility of the model.  相似文献   
9.
Balanced infinite periodic minimal surface families that contain the cubic Gyroid (G), Diamond (D) and Primitive (P) surfaces are studied in terms of their global packing and local curvature properties. These properties are central to understanding the formation of mesophases in amphiphile and copolymer molecular systems. The surfaces investigated are the tetragonal, rhombohedral and hexagonal tD, tP, tG, rG, rPD and H surfaces. These non-cubic minimal surfaces furnish topology-preserving transformation pathways between the three cubic surfaces. We introduce `packing (or global) homogeneity', defined as the standard deviation Δd of the distribution of the channel diameter throughout the labyrinth, where the channel diameter d is determined from the medial surface skeleton centered within the labyrinthine domains. Curvature homogeneity is defined similarly as the standard deviation ΔK of the distribution of Gaussian curvature. All data are presented for distinct length normalisations: constant surface-to-volume ratio, constant average Gaussian curvature and constant average channel diameter. We provide first and second moments of the distribution of channel diameter for all members of these surfaces complementing curvature data from [A. Fogden, S. Hyde, Eur. Phys. J. B 7, 91 (1999)]. The cubic G and D surfaces are deep local minima of Δd along the surface families (with G more homogeneous than D), whereas the cubic P surface is an inflection point of Δd with adjacent, more homogeneous surface members. Both curvature and packing homogeneity favour the tetragonal route between G and D (via tG and tD surfaces) in preference to the rhombohedral route (via rG and rPD).  相似文献   
10.
Copper thin films are deposited by thermal evaporation on unetched and etched monocrystalline silicon. The study by alpha particles backscattering (RBS) raises a strong diffusion of copper in silicon substrates with and without native suboxide layer. On the other hand, the X-rays diffraction shows the formation and the growth of Cu3Si and Cu4Si silicides. Whereas the scanning microscopy underlines large crystallites growth surrounded by black zones of silicon coming from the uncovered substrate, independently to the surface state of the substrate, after annealing at high temperature. The presence of native silicon suboxide at Cu/Si interface, influences in a drastic way the minimal temperature to which the interfacial reaction occurs. The oxygen impurities detected by microanalysis, after heat treatment under vacuum, are closely related to the growth of silicides crystallites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号