首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   177篇
  国内免费   121篇
化学   314篇
晶体学   27篇
力学   2篇
综合类   8篇
数学   1篇
物理学   470篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   5篇
  2019年   7篇
  2018年   17篇
  2017年   29篇
  2016年   26篇
  2015年   27篇
  2014年   40篇
  2013年   70篇
  2012年   50篇
  2011年   75篇
  2010年   59篇
  2009年   47篇
  2008年   34篇
  2007年   44篇
  2006年   48篇
  2005年   36篇
  2004年   23篇
  2003年   22篇
  2002年   26篇
  2001年   21篇
  2000年   8篇
  1999年   12篇
  1998年   15篇
  1997年   14篇
  1996年   3篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1980年   1篇
排序方式: 共有822条查询结果,搜索用时 31 毫秒
1.
采用溶胶-凝胶法成功制备出系列Eu3+掺杂和Li+Eu3+共掺杂Gd2ZnTiO6红色荧光粉,并研究Li+Eu3+掺杂对样品的晶体结构、微观形貌及发光性能的影响。结果显示,所制备的Gd2ZnTiO6Eu3+,Li+(GZT∶Eu3+,Li+) 荧光粉为双钙钛矿结构,属于单斜晶系(空间群:P21/n),大小为10 μm的无规则形状的颗粒。在395 nm近紫外光的激发下,GZT∶Eu3+的发射光谱展示出典型的Eu3+线状特征光谱,发射峰中心位于615 nm处,归属于Eu3+5D07F2跃迁。Eu3+的最佳掺杂浓度为0.07(摩尔分数),样品显示明显的浓度猝灭效应,其机制为电偶极子-电偶极子(d-d)相互作用。此外,研究还发现,Li+掺杂对样品的晶体结构、微观形貌没有影响,但是一定量的Li+掺杂可以显著增强样品的荧光强度。当Li+浓度为0.05时,荧光粉发射主峰强度增强程度最大,提高至原来的4.3倍,说明通过Li+Eu3+共掺杂可以获得高亮度的GZT红色荧光粉。GZT∶0.14Eu3+,0.05Li+荧光粉的CIE色坐标为(0.631 1,0.375 3)与标准红光色坐标(0.670,0.330)较为接近,是一种潜在的LED用红色荧光粉。  相似文献   
2.
采用湿化学法合成了Eu原子掺量5%的Lu2O3陶瓷前驱体,通过SEM、XRD研究了煅烧前后前驱体和1 100 ℃煅烧4 h后粉体的形貌、结构以及物相。结果表明煅烧后的粉体为纳米类球形、高分散且结晶性良好的颗粒。颗粒尺寸为68.5 nm。使用煅烧后的粉体为原料,在1 650 ℃真空烧结30 h制备了高透过率的Eu:Lu2O3陶瓷,晶粒尺寸为46 μm,在611 nm处的直线透过率可以达到66.3%。此外对陶瓷的吸收曲线、光致激发和发射光谱特性以及X射线激发发射光谱进行研究。可观察到,Eu:Lu2O3陶瓷存在基质和激活离子两类吸收,光致发光光谱和X射线激发发射光谱均可以看出Eu:Lu2O3陶瓷存在极强的5D07F2跃迁发光,位于611 nm处。对比商业的BGO单晶的X射线发射光谱,可得本实验中制备的陶瓷的光输出为85 000 ph/MeV。Eu:Lu2O3陶瓷本身有着高X射线以及高能粒子的阻止能力,结合高光输出特性,表明Eu:Lu2O3陶瓷在X射线成像等领域具有巨大的潜在应用价值。  相似文献   
3.
4.
Eu2+-, Mn2+- and Eu2+−Mn2+-doped CaMgSi2O6 phosphors have been prepared by a high-temperature solid-state reaction. Systematic investigation of the concentration- and temperature-dependent luminescence of Mn2+ showed that Mn2+ ions occupy two distinct sites in CaMgSi2O6. Electron–vibration interaction (EVI) analyses of Mn2+ ions revealed Huang–Rhys factors of 4.73 and 2.82 as well as effective phonon energies of 313 and 383 cm−1 for the two sites. Eu2+−Mn2+ energy transfer is also discussed, and its efficiency is estimated by lifetime and luminescence spectra. The different thermal quenching behaviours of Eu2+ and Mn2+, the distinct emission colours of Eu2+ (blue, band peak at ∼451 nm) and Mn2+ (yellow–red range, band peaks at ∼583 and 693 nm) endow the co-doped samples with potential applications in luminescence thermometry and temperature-/excitation wavelength-responsive dual anti-counterfeiting.  相似文献   
5.
Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0–1000 IU mL−1) for AFP with a low limit of detection (0.1 IU mL−1) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing.  相似文献   
6.
采用高温固相法制备了Ca9Al(PO4)7∶Eu2+蓝色荧光粉,研究了Ca9Al(PO4)7∶Eu2+的发光、浓度猝灭及温度稳定性.Ca9Al(PO4)7∶Eu2+的激发光谱覆盖200~350 nm紫外区;发射光谱为一主峰位于445 nm的宽谱,对应Eu2+的4f6 5d1--→4f特征跃迁.研究发现,随Eu2+掺杂量的增大,Ca9Al(PO4)7∶Eu2+的发射强度呈现先增大、后减小的变化趋势,最大发射强度对应的Eu2+掺杂量为0.01,即存在浓度猝灭效应,对应的机理为电偶极-电偶极相互作用;依据晶格常数,得出临界距离为2.297 nm.在25~300℃范围内改变光谱测量温度,发现温度升高到150℃时,Ca9Al(PO4)7∶Eu2+的发射强度变为25℃时的81.0%,对应的激活能为0.268 eV,说明材料具有较好的温度稳定性.  相似文献   
7.
用沉淀法制备了尺寸约为8 nm的YVO4∶Eu3+纳米粒子,然后用反相微乳液法在YVO4∶Eu3+纳米粒子的表面包覆了一层Si O2壳。利用XRD、TEM、UV-Vis吸收光谱和光致发光光谱对合成的样品进行了表征。得到的复合物具有较好的核壳结构,通过改变硅酸四乙酯的用量可以改变Si O2壳的厚度。研究了Si O2壳对YVO4∶Eu3+发光性质的影响,结果表明:包覆和未包覆的样品在紫外光激发下都有Eu3+的特征发射;随着Si O2壳厚度的增加,发光强度和量子效率越来越低,Eu3+格位对称性越来越高。  相似文献   
8.
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40  in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60  and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.  相似文献   
9.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   
10.
以PEG-2000、柠檬酸和甘氨酸为表面活性剂,采用水热法制备出扁平纳米棒、纳米花和纳米片状的GdF3∶Eu3+发光材料,并对其结构和性能进行了表征.XRD结果表明,所得样品均为正交晶系.FESEM照片表明,使用不同表面活性剂所制备的产物形貌不同.研究了以PEG-2000为表面活性剂时反应物浓度对产物形貌的影响,并对其生长机理进行了探讨.荧光光谱表明,在不同波长激发光的照射下,GdF3∶Eu3+纳米晶的最强发射峰均位于591 nm处,对应于Eu3+的5D0→7F1磁偶极跃迁.GdF3∶Eu3+的Gd3+-Eu3+之间发生了有效的能量传递.不同形貌样品的发光强度不同.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号