首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学   6篇
物理学   2篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
  2006年   1篇
  2003年   3篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 265 毫秒
1
1.
The subject of the investigations are precipitation zones, which grew as a result of chemical diffusion in AgPd30/CuSn6 bimetals. These precipitation zones have been characterized by metallography, electron probe microanalysis and x-ray diffraction. The growth of precipitation zones in the plating layer and in the substrate layer in dependence on time have been determined. The use of x-ray diffraction alone for the identification of the precipitates could not supply satisfying results in every case. This problem was solved by the application of electron probe microanalysis using a correction method, which allows the estimation of the chemical composition of small particles.Dedicated to Professor Dr. rer. nat. Dr. h. c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   
2.
Progression studies have been followed from Cu(111)‐ and Cu(100)Sn binaries to Cu(111)‐ and Cu(100)SnSb ternary‐alloy systems under the same experimental conditions. The segregation behaviour of Sn in the two orientations are explained. It is found that the kinetic segregation profiles of Sn in the ternary alloys shift to lower temperatures as compared to that in the binary. The Sn profile shift is mainly due to the decrease in the activation energy of Sn in the ternary systems. For a particular Cu orientation, the other segregation parameters that the Sn profiles depend on, like the pre‐exponential factor, segregation energy and the interaction coefficient, are found to be the same in the two systems. There is also a change in the equilibrium segregation profiles of Sn. In the ternary system, site competition between Sn and Sb causes the Sn to suffer exponential desegregation and eventual displacement from the surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
Copper‐tin thin films (CT TFs) were deposited on p‐type Si(100) by radio frequency (RF) magnetron co‐sputtering method. The atomic ratio of Cu and Sn showed complementary tendency with various RF powers on metal targets. Antibacterial test was conducted with Gram‐negative Escherichia coli. The ratio of Cu and Sn ions and the contact time with E. coli affected the antibacterial efficiency. Increasing the ratio of Cu ions and contact time showed higher antibacterial activity. Cu20Sn6 called as bronze structure, metallic Cu, and copper oxide phases were identified from X‐ray diffraction data after sterilization. The lattice strain that was changed due to the substitution of Cu and Sn was also calculated. The surface morphology of CT TFs was entirely grown to round shape when the dominant element was Sn. But, as the content of Cu increased, the surface morphology was changed from ball shape to sharp column shape. When fixed contact time, the intensities of Cu 2p increased but the intensities of Sn 3d decreased as increasing the atomic ratio of Cu. The oxidation of Cu was more sharply progressed as the RF power on Cu target increased. When fixed CT TFs, the intensities of Cu 2p were consistent but the intensities of Sn 3d3/2 decreased as increasing contact time between CT TF and E. coli.  相似文献   
4.
锂离子电池负极材料CuSn的Li嵌入性质的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
使用基于混合基表示的第一原理赝势法,研究了锂离子电池非碳类负极材料CuSn的Li嵌入时的形成能以及相应的电子结构.还给出了Li嵌入时的体积变化,能带结构、电子态密度以及电荷密度分布等性质, 并讨论了CuSn作为负极材料的特点.计算发现,Cu-Sn化合物在闪锌矿结构时,Li嵌入主体材料时的嵌入形成能大致在3.5eV附近. 关键词: 锂离子电池 负极材料 CuSn 电子结构  相似文献   
5.
锂电池负极材料CuSn的电子和几何结构   总被引:1,自引:0,他引:1  
使用基于混合基表示的第一原理赝势法 ,研究了CuSn化合物的电子与几何结构性质 .得出CuSn二元化合物在NaCl结构、CsCl结构、闪锌矿结构、WC结构、NiAs结构和四角结构 (在CsCl结构计算的基础上 ,再沿C轴畸变 )下的体系“能量 体积”的关系 ,即能量与结构相图 ;还给出了最稳定相的能带结构、电子态密度以及电荷密度分布等性质 ,也讨论了CuSn在最稳定的NiAs结构下电子键合性质的特点 .计算得到的CuSn能量最低结构为NiAs结构 ,与实验结果一致  相似文献   
6.
The electronic structure, chemical bonding, and excitation spectra of neutral, cationic, and anionic diatomic molecules of Cu and 14 group elements formulated as [CuE]+/0/? (E = C, Si, Ge, Sn, Pb) were investigated by density functional theory (DFT) and time‐dependent (TD)‐DFT methods. The electronic and bonding properties of the diatomics analyzed by natural bond orbital (NBO) analysis approch revealed a clear picture of the chemical bonding in these species. The spatial organization of the bonding between Cu and E atoms in the [CuE]+/0/? (E = Si, Ge, Sn, Pb) molecules can easily be recognized by the cut‐plane electron localization function representations. Particular emphasis was given on the absorption spectra of the [CuE]+/0/? which were simulated using the results of TD‐DFT calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP functional. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
使用基于混合基表示的第一原理赝势法,研究了CuSn化合物的电子与几何结构性质.得出CuSn二元化合物在NaCl结构、 CsCl结构、闪锌矿结构、 WC结构、 NiAs结构和四角结构(在CsCl结构计算的基础上,再沿C轴畸变)下的体系"能量-体积"的关系,即能量与结构相图;还给出了最稳定相的能带结构、电子态密度以及电荷密度分布等性质,也讨论了CuSn在最稳定的NiAs结构下电子键合性质的特点.计算得到的CuSn能量最低结构为NiAs结构,与实验结果一致.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号