首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
After Xiao et al. [W.-K. Xiao, J. Ren, F. Qi, Z.W. Song, M.X. Zhu, H.F. Yang, H.Y. Jin, B.-H. Wang, Tao Zhou, Empirical study on clique-degree distribution of networks, Phys. Rev. E 76 (2007) 037102], in this article we present an investigation on so-called k-cliques, which are defined as complete subgraphs of k (k>1) nodes, in the cooperation-competition networks described by bipartite graphs. In the networks, the nodes named actors are taking part in events, organizations or activities, named acts. We mainly examine a property of a k-clique called “k-clique act degree”, q, defined as the number of acts, in which the k-clique takes part. Our analytic treatment on a cooperation-competition network evolution model demonstrates that the distribution of k-clique act degrees obeys Mandelbrot distribution, P(q)∝(q+α)γ. To validate the analytical model, we have further studied 13 different empirical cooperation-competition networks with the clique numbers k=2 and k=3. Empirical investigation results show an agreement with the analytic derivations. We propose a new “heterogeneity index”, H, to describe the heterogeneous degree distributions of k-clique and heuristically derive the correlation between H and α and γ. We argue that the cliques, which take part in the largest number of acts, are the most important subgraphs, which can provide a new criterion to distinguish important cliques in the real world networks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号