首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   1篇
  国内免费   6篇
化学   155篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   35篇
  2023年   113篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   8篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
1.
Low-dimensional Ruddlesden-Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing γ-aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA)2MA3Pb4I13 (MA=CH3NH3+), leading to the charges localized in the van der Waals gap, thereby constructing “charged-bridge” for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA)2MA3Pb4I13 exciton binding energy as low as ≈73 meV. Benefiting from these merits, the resultant GABA-based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 °C for 500 h.  相似文献   
2.
We report a new strategy to fabricate a multifunctional composite photoanode containing TiO2 hollow spheres (TiO2-HSs), Au nanoparticles (AuNPs) and novel NaYF4 : Yb,Er@NaLuF4 : Eu@SiO2 upconversion nanoparticles (UCNPs). The AuNPs are grown on the photoanode film including TiO2-HSs and UCNPs by a simple in situ plasmonic treatment. As a result, an impressive power conversion efficiency of 14.13 % is obtained, which is a record for N719 dye-based dye-sensitized solar cells, demonstrating great potential for the solar cells toward commercialization. This obvious enhancement is ascribed to a collaborative mechanism of the TiO2-HSs exhibiting excellent light-scattering ability, of the UCNPs converting near-infrared photons into visible photons and of the AuNPs presenting outstanding surface plasmon resonance effect. Notably, a steady-state experiment further reveals that the champion cell exhibits 95.33 % retainment in efficiency even after 180 h of measurements, showing good device stability.  相似文献   
3.
Electroactive ionenes combining caged-shaped diazabicyclic cations and aromatic diimides were developed as interlayers in organic solar cells (OSCs). These ionenes reduce the work-function of air-stable metal electrodes (e.g., Ag, Cu and Au) by generating strong interfacial dipoles, and their optoelectronic and morphological characters can be modulated by aromatic diimides, leading to high conductivity and good compatibility with active layers. The optimal ionene exhibits superior charge-transport, desirable crystallinity, and weak visible-absorption, boosting the efficiency of benchmark PM6 : Y6-based OSCs up to 17.44 %. The corresponding normal devices show excellent stability at maximum power point test under one sun illumination for 1000 h. Replacing Y6 with L8-BO promotes the efficiency to 18.43 %, one of the highest in binary OSCs. Notably, high efficiencies >16 % are maintained as the interlayer thickness increasing to 105 nm, the best result with interlayer-thickness over 100 nm.  相似文献   
4.
The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.  相似文献   
5.
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.  相似文献   
6.
Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.  相似文献   
7.
To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.  相似文献   
8.
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.  相似文献   
9.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   
10.
The migration of ions is known to be associated with various detrimental phenomena, including current density-voltage hysteresis, phase segregation, etc., which significantly limit the stability and performance of perovskite solar cells, impeding their progress toward commercial applications. To address these challenges, we propose incorporating a polymerizable organic small molecule monomer, N-carbamoyl-2-propan-2-ylpent-4-enamide (Apronal), into the perovskite film to form a crosslinked polymer (P-Apronal) through thermal crosslinking. The carbonyl and amino groups in Apronal effectively interact with shallow defects, such as uncoordinated Pb2+ and iodide vacancies, leading to the formation of high-quality films with enhanced crystallinity and reduced lattice strain. Furthermore, the introduction of P-Apronal improves energy level alignment, and facilitates charge carrier extraction and transport, resulting in a champion efficiency of 25.09 %. Importantly, P-Apronal can effectively suppress the migration of I ions and improve the long-term stability of the devices. The present strategy sets forth a path to attain long-term stability and enhanced efficiency in perovskite solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号