首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   3篇
物理学   11篇
  2021年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 306 毫秒
1.
Two antiperovskite-type ternary nitrides of InNM3 (M=Ni, Co) have been synthesized from In2O3 and Ni or Co powders under NH3 atmosphere at 600 °C. InNCo3 is a new ternary nitride whereas InNNi3 was previously reported as InN0.5Ni3 with different nitrogen content. The lattice parameters refined by Rietveld method are 3.8445(1) Å for InNNi3 and 3.8541(7) Å for InNCo3, respectively. Both nitrides show metallic behaviors and below 70 K the T2 temperature dependence of resistivity was observed indicative of a Fermi liquid behavior. The temperature dependence of the field-cooling (FC) and zero-field-cooling (ZFC) magnetization and time decay of thermoremanent magnetization indicate the spin-glass-like behavior in InNM3 (M=Ni, Co). The freezing temperatures for this behavior, Tf, are about 300 K for InNNi3 and 10 K for InNCo3, respectively.  相似文献   
2.
In this paper, we study the structural, electronic and elastic properties of the ternary AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds using the full-potential linearized augmented plane wave (FP-LAPW) scheme and the pseudopotential plane wave (PP-PW) scheme in the frame of generalized gradient approximation (GGA). Results are given for the lattice parameters, bulk modulus, and its pressure derivative. The calculated lattice parameters are in good agreement with experimental results. We have determined the full set of first-order elastic constants, shear modulus, Young's modulus and Poisson's ratio of these compounds. Also, we have presented the results of the band structure, densities of states, it is found that this compounds metallic behavior, and a negative gap Г→R for Pr3AlC. The analysis charge densities show that bonding is of covalent–ionic and ionic nature for AgSbSe2 and AgSbTe2 compounds.  相似文献   
3.
The temperature-dependent magnetization, lattice, and transport properties of Mn3Sn1−xGexC (0≤x≤0.5) compounds are systematically investigated. The Mn–Mn atomic distance decreases as Ge content is increased, and the transition temperature from ferromagnetic (or ferrimagnetic) to paramagnetic state decreases too. Mn3SnC has a large magnetovolume effect (MVE). However, Ge-doping in Mn3SnC gradually reduces the MVE, till the MVE disappears. Whether there is an abnormal lattice change or not, there always exists an anomalous increase in resistivity near the magnetic phase transition point with decreasing temperature.  相似文献   
4.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   
5.
We report the effects of Al doping on the structure, magnetic properties, and magnetocaloric effect of antiperovskite compounds Ga1−xAlxCMn3 (0≤x≤0.15). Partial substitutions of Al for Ga enhance the Curie temperature (from 250 K for x=0.0 to 312 K for x=0.15) and the saturation magnetization. On increasing the doping level x, the maximum values of the magnetic entropy change (−ΔSM) decreases while the temperature span of ΔSM vs. T plot broadens. Furthermore, the relative cooling power (RCP) is also studied. For 20 kOe, the RCP value tends to saturate at a high doping level (for x=0.12, 119 J/kg at 296 K). However, at 45 kOe, the RCP value increases quickly with increasing x (for x=0.15, 293 J/kg at 312 K). Considering the relatively large RCP and inexpensive raw materials, Ga1−xAlxCMn3 may be alternative candidates for room-temperature magnetic refrigeration.  相似文献   
6.
7.
The effects of Mn substitutions on the crystal structure, magnetic properties, and magnetocaloric effect (MCE) of antiperovskite Sn1−xCMn3+x (0≤x≤0.40) have been investigated detailedly. Both the Curie temperature (TC) and the magnetizations at 40 kOe decrease with increasing x firstly for x≤0.10, and then increase with increasing x further. The type of magnetic transition changes from first-order to second-order around x=0.10 with increasing x. Chemical composition-dependent MCE is also studied around TC. With increasing x, the maximal magnetic entropy changes decrease and the magnetic phase transitions broaden. Accordingly, the relative cooling power (RCP) increases with increasing x, reaching the largest values of ∼0.56 J/cm3 (∼75 J/kg) and ∼1.66 J/cm3 (∼221 J/kg) with the magnetic changes of 20 kOe and 48 kOe, respectively. Considering the large RCP, inexpensive, and innoxious raw materials, these serial samples Sn1−xCMn3+x are suggested to be potential room-temperature magnetic refrigerant materials.  相似文献   
8.
The negative volume magnetostriction in the external magnetic field for antiperovskite Mn3.3Sn0.7C compound is discovered. Its magnetic transition temperature from paramagnetism to ferrimagnetism is 348 K. The linear and volume magnetostrictions were investigated by measuring the change in length along the three-dimensional directions of the square samples at room temperature. Volume contraction was observed along all of the three directions throughout the whole magnetization. The value of volume magnetostriction is −44×10−6 at 1.5 T. The magnetization saturates basically at 1.5 T, however the volume magnetostriction should be higher with further increase in magnetic field.  相似文献   
9.
The structural, magnetic and electrical transport properties of Zn-doped antiperovskite compounds Ga1−xZnxCMn3 (0≤x≤0.30) have been investigated. After partial substitution of Zn for Ga, the Curie temperature increases monotonously and the ground antiferromagnetic (AFM)-ferromagnetic intermediate (FI) phase transition is gradually suppressed. With increasing the doping level x, the saturated magnetizations decreases gradually firstly for x≤0.20, then increases with increasing x. The electrical transport properties of Ga1−xZnxCMn3 are studied at different magnetic fields. Enhanced giant magnetoresistance (GMR) was observed around the AFM-FI transition. With increasing x, the maximal values and peak widths of GMR increase. Particularly, for x=0.20, GMR reaches a maximum value of 75%, spanning a temperature range of 80 K at 50 kOe and displays the behavior of strongly depending on the magnetization history. The possible origins are discussed.  相似文献   
10.
First-principle calculations of structural, elastic and high pressure properties of antiperovskites XNBa3 (X=As, Sb) are performed, using the full-potential linear muffin-tin orbital (FP-LMTO) method. The local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus and its pressure derivatives. We have determined the elastic constants C11, C12 and C44 and their pressure dependence. We derived shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline XNBa3 aggregates. By analyzing the ratio of the bulk to shear moduli, we conclude that XNBa3 compounds are brittle in nature. We estimated the Debye temperature of XNBa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNBa3 and SbNBa3 compounds, and it still awaits experimental confirmation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号