首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1953篇
  免费   384篇
  国内免费   923篇
化学   1965篇
晶体学   142篇
力学   219篇
综合类   44篇
数学   5篇
物理学   885篇
  2024年   6篇
  2023年   34篇
  2022年   40篇
  2021年   47篇
  2020年   56篇
  2019年   61篇
  2018年   43篇
  2017年   51篇
  2016年   68篇
  2015年   69篇
  2014年   105篇
  2013年   114篇
  2012年   91篇
  2011年   103篇
  2010年   85篇
  2009年   124篇
  2008年   112篇
  2007年   129篇
  2006年   113篇
  2005年   135篇
  2004年   134篇
  2003年   151篇
  2002年   134篇
  2001年   152篇
  2000年   117篇
  1999年   112篇
  1998年   114篇
  1997年   100篇
  1996年   88篇
  1995年   84篇
  1994年   87篇
  1993年   92篇
  1992年   67篇
  1991年   80篇
  1990年   73篇
  1989年   61篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
排序方式: 共有3260条查询结果,搜索用时 15 毫秒
1.
2.
利用分子筛择形特点,对煤直接液化油中的混合酚实施高效分离。本研究选取间甲酚和对甲酚作为分离煤直接液化油馏分段混合酚的模型化合物,采用化学液相沉积法对HZSM-5吸附剂的孔口结构进行改变,分析分子筛硅比及颗粒粒径对模型化合物间甲酚和对甲酚吸附分离性能的影响,以获得高性能固相吸附剂,并将其应用于180-190℃馏分段混合酚分离。结果表明,当分子筛硅比为25、粒径为3-5 μm时,分子筛的孔口结构调节效果最优;当正硅酸乙酯的最小用量为0.2 mL/g时,固相吸附剂的吸附量为0.03 g/g,对甲酚选择性高于95%。由于外表面沉积物对吸附剂的孔口结构变化,导致对甲酚选择性的提高。进一步采用HZSM-5(1)吸附剂对真实煤直接液化油混合酚的分离中发现,苯酚和对甲酚的选择性均达到100%。  相似文献   
3.
为研究多孔吸能材料泡沫板对工程结构的抗爆防护作用,开展室外爆炸破坏实验,分别对设置不同泡沫防护层的钢筋混凝土(reinforced concrete,RC)板在爆炸荷载下的动态响应及破坏模式进行了研究,并运用LS-DYNA软件建立了有限元模型。通过与实验对照,验证了模型的可行性,对比分析了有、无泡沫防护层钢筋混凝土板的损伤破坏规律,并讨论了泡沫密度梯度分布和纵筋配筋率的影响。结果表明:有限元模型能够有效分析含泡沫防护层RC板的动态响应及其破坏形态;泡沫防护层能够有效减小钢筋混凝土板的挠度变形,降低试件的破坏程度;泡沫密度由下到上递增情况对RC板的减爆效果最好;增大配筋率可以提升泡沫防护RC板整体抗爆性能。  相似文献   
4.
以熔铸型含混合炸药熔奥梯为对象,研究铸装含混合炸药快速热点火后的燃烧转爆轰特性。建立了快速热点火燃烧转爆轰实验平台,由实验装置(加热装置、约束钢管、炸药)、压力测试系统、光纤测速系统组成;加热装置加热15 mm厚45钢钢板,峰值温度大于1 100 ℃,温升速率为85~95 ℃/s。开展了快速热点火带壳熔奥梯炸药燃烧转爆轰实验,由加热装置加热约束钢管内熔奥梯炸药,炸药化学反应阵面压力和传播速度分别由压电性高压压力传感器和光纤探针测定;实测阵面压力约1 GPa,传播速度最大约2 600 m/s。由光纤数据获得炸药化学反应阵面传播轨迹,通过特征线方法获得冲击形成点,半定量给出冲击形成距离大于850 mm;并比较了管体破片质量实测值与炸药完全爆轰时破片平均质量计算值,实测值远小于计算值。综合实测化学反应阵面传播速度和压力、冲击形成距离分析、破片质量比较,可确定熔奥梯炸药没有发生完全爆轰,其化学反应状态为爆燃。另外,采用Adams和Pack模型、CJ燃烧模型,都能够半定量的预估冲击形成距离和燃烧波后压力,为实验设计提供依据,但CJ燃烧模型的计算结果更接近于实测值。  相似文献   
5.
通过简单的化学沉淀法制备了纳米前驱体,结合真空烧结工艺,制备了一系列镥稳定钆石榴石{(Gd, Lu)3Al5O12∶Tb,Eu}透明陶瓷。将透明陶瓷加工成1 mm厚的圆片,对透明陶瓷样品进行了X射线衍射、光致发光、透过率和衰减时间等表征。高温烧结过后,陶瓷样品仍保持稳定的石榴石相。选定313 nm作为透明陶瓷的激发波长,可获得最强的荧光发射。此外,通过对不同样品进行紫外可见荧光测试,获得了由绿光到红光的可调节发射。在313 nm激发,543 nm和591 nm的监测波长下,透明陶瓷样品均具有Eu3+的毫秒级衰减时间。  相似文献   
6.
在氮气环境下用PVT方法生长氮化过程中,氮面和面由于表面化学性质不同,生长的主要化学反应速度存在差异。原子在生长表面的迁移能力不同造成单晶表面生长方式差异较大。在基本相同条件下(生长温度、生长温差、生长气压、类似的籽晶、同一台生长设备)进行了、氮面氮化单晶晶体生长。为了更明显地表现氮面的差异,将同一片籽晶分为两半,翻转其中一半让氮面同时生长。面生长较好的区域形成了明显的晶畴,而氮面生长时生长较好的部分出现了明显的生长台阶,并出现了晶畴边界被生长台阶湮灭的生长现象,进一步通过AFM观测到面生长台阶平整但被缺陷所阻隔,晶畴发育明显为各晶畴独立生长。氮面生长台阶没有面规则但连续性较强,在原来晶畴边界位置也出现了连续的生长台阶(或台阶簇)。所以籽晶质量不高时氮面生长更容易提高晶体质量,后续的XRD测量结果也证明了氮面生长后的晶体质量明显高于面生长的晶体质量。  相似文献   
7.
具有AEI结构的SSZ-39分子筛的骨架外阳离子落位和分布对其催化性能影响显著.AEI笼中有三个结晶学不等价位,且取代T位具有一定的倾向性.本文结合固体核磁共振(NMR)技术(27Al/23Na MQ MAS NMR),以及密度泛函理论(DFT)计算,研究了不同硅比Na-SSZ-39分子筛中的Na+落位和分布.在孤立分布的情况下,原子优先占据于T3位,Na+主要落位于AEI笼中的SIIa0和SIII'a0位点上,其中SIII'a0位点的优先度较高,此外少部分Na+还落位于六棱柱内部的SIa0.当对存在时,AlSiSiAl分布的对占据六元环的对位(T3-T3),对应的Na+分别落位于SIIa1和SⅢ'a1位点.随着分子筛结构的部分破坏,游离的Na+可能形成明显的SIII'b位点.本文可加深对SSZ-39分子筛构效关系的理解,为更好地调控催化性能奠定基础.  相似文献   
8.
Au/H相似性的研究是现代化学中的一个热门话题.我们从理论上报道Au/H相似的新成员:共价化合物B2Au4,离子化合物Al2Au4和BAl Au4.采用密度泛函和波函数理论方法对比研究了缺电子体系B2Au4、Al2Au4和BAl Au4的几何和电子结构.详细讨论了它们基态结构的轨道、适应性自然密度划分(Ad NDP)和电子局域函数(ELF)分析.计算结果表明稍微扭曲变形的C2B2Au4是基态结构,在这个共价化合物中含有两个B―Au―B三中心二电子(3c-2e)键.然而C3vAl+(Al Au4)-和C3vAl+(BAu4)-被研究证明是含有三个X―Au―Al三中心二电子键的类盐化合物(在Al2Au4中X=Al,BAl Au4中X=B).Al2Au4和BAl Au4是至今为止首例报道的在离子缺电子体系中含有金桥键的化合物.同时计算了B2Au4-、Al2Au4-和BAl Au4-阴离子基态结构的绝热剥离能和垂直剥离能,为实验表征提供依据.文中报道的金桥键为共价键和离子键相结合的缺电子体系提供了一个有趣的键合模式,有助于设计含有高度分散金原子的新材料和催化剂.  相似文献   
9.
通过样品处理、干扰实验、方法检出限、准确度和精密度实验,确定了最佳实验条件,建立了电感耦合等离子体-原子发射光谱法(ICP-AES)测定铜磁铁矿中铜、锰、、钙、镁、钛和磷含量的方法。试料经盐酸、硝酸、氢氟酸、高氯酸分解,用盐酸溶解盐类,过滤,采用电感耦合等离子体原子发射光谱法同时测定滤液中铜、锰、、钙、镁、钛和磷的含量。方法检出限为锰、钛和磷小于0.00085%,其它元素小于0.0054%,分析结果与分光光度法、X射线荧光光谱法(XRF)和原子吸收光谱法(AAS)分析结果一致,8个实验室对5个水平样品进行协同实验给出了方法的精密度。  相似文献   
10.
本文构建了一种基于3-苯丙噻唑基-2-羟基-5-甲基苯甲醛的荧光探针用于检测离子。该荧光探针能够灵敏、高选择性地检测离子,并显示出颜色和强烈的荧光变化双重响应。研究结果表明,该探针对离子表现出非常好的荧光增强效果,检测过程中其它金属离子不会对检测结果产生明显的干扰。其比率荧光强度(I490/I567)与离子的浓度(0~20μmol/L)之间具有良好的线性关系,检测限低至0.5μmol/L。由于具有高效的选择性,该探针可以用于检测污染河水中的离子含量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号