首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   101篇
  国内免费   46篇
化学   11篇
力学   7篇
综合类   2篇
数学   3篇
物理学   319篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2014年   17篇
  2013年   6篇
  2012年   5篇
  2011年   22篇
  2010年   20篇
  2009年   19篇
  2008年   23篇
  2007年   19篇
  2006年   18篇
  2005年   6篇
  2004年   26篇
  2003年   22篇
  2002年   16篇
  2001年   10篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   1篇
  1996年   12篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
排序方式: 共有342条查询结果,搜索用时 13 毫秒
1.
陈培锋 《大学物理》2022,41(4):7-10
本文结合光电信息科学与工程专业的特点,以“光线”和“高斯光束”的推导为例,探索关于自由空间中光传输理论模型的内在联系的教学,实践证明这种方法对于学生理解关于光传输的后续课程非常必要,为工科专业基础理论课的课程教学提供一定参考.  相似文献   
2.
电动力学是一门研究电磁场规律的重要课程,其抽象的理论和繁杂的数学推导让学生很难理解和掌握,同时传统的教学内容和教学手段很难调动学生的学习兴趣.通过将前沿研究与经典教学内容有机结合,并以MATLAB,COMSOL等科研软件作为辅助教学工具,将抽象的物理概念可视化,实现教学内容和教学手段与时俱进.此举不仅可以激发学生学习兴趣、增强对物理图像的深入理解,还可以开拓学生视野,培养其科学素养和创新能力.  相似文献   
3.
高能自旋极化正负电子束与偏振伽马射线在高能物理、实验室天体物理与核物理等领域有十分重要的应用.近年来随着超短超强激光脉冲技术的快速发展,利用强激光与物质相互作用的非线性康普顿散射和多光子Breit-Wheeler过程为制备高极化度、高束流密度的高能极化粒子束提供了新的可能.本文对基于强激光产生高能极化正负电子束与偏振伽马射线的研究成果进行简要回顾,并介绍了这些方法的基本物理原理和主要结果.  相似文献   
4.
光与物质相互作用的过程具有丰富的物理内涵,不仅有助于理解光的本质,更可以提供一种有效操控物质的手段.开放式光学微腔具有光场强局域性、频率域和空间域的可调谐性以及光纤可集成性等特点,为研究微腔内的光与物质相互作用提供了一个理想平台.本文首先介绍基于开放式法布里-珀罗微腔的腔量子电动力学系统的基本特性,然后介绍开放式法布里-珀罗微腔结构的制备方法,进而从弱耦合、强耦合和差发射体三方面着重介绍近年来开放式微腔与固态单量子系统相互作用的研究工作,最后进行了总结与展望.  相似文献   
5.
高功率超短超强激光脉冲的诞生开启了相对论非线性光学、高强场物理、新型激光聚变、实验室天体物理等前沿领域.近年来,随着数拍瓦级乃至更高峰值功率激光装置的建成,超强激光与等离子体相互作用进入到一个全新的高强场范畴.这种极强激光场与等离子体相互作用蕴含着丰富的物理过程,除了经典的波与粒子作用、相对论效应、有质动力效应等非线性物理过程外,量子电动力学(QED)效应变得格外重要,例如辐射阻尼效应、正负电子对产生、强伽马射线辐射、QED级联、真空极化等.本文主要介绍我们近年来在极端强激光场与等离子体相互作用中激发的QED效应以及伴随的超亮强伽马射线辐射和稠密正负电子对产生等方面的研究进展.  相似文献   
6.
强激光等离子体物理是随着激光技术的发展而快速兴起的一门交叉学科,主要研究强激光与物质相互作用形成的等离子体结构、演化及应用.其研究内容从早期纳秒激光与等离子体作用相关的惯性约束聚变物理,到近年来飞秒激光与等离子体作用的新型加速器和辐射源物理,再到当前和未来以数十至百拍瓦激光等离子体作用的量子电动力学(QED)等离子体物理,逐步得到拓展和深入.  相似文献   
7.
本文是文献[1]和[2]联合的后继文章,在文中我们依据电磁学和电动力学中的麦克斯韦方程组建立了有质量光子导致导体中的超导现象这一事实的规范不变描写,文献[1]的结果是目前理论选取洛伦兹规范的特殊情形.我们发现在这种规范不变的理论中存在一个零质量的标量场,它可以和规范势的纵向分量相互转化.这正是文献[2]所介绍的2013年诺贝尔物理学奖中著名的希格斯机制,即规范粒子吃掉Goldstone玻色子而产生纵向分量,因而获得质量.这个新引进的零质量标量场对应量子场论中激发Goldstone玻色子的标量场,它可以被看成是一个更一般的两分量复标量场的相角分量.而此推广的复标量场的常数模分量可以被看成是另一个动力学场——希格斯场的真空期望值.希格斯场的激发是希格斯粒子,即所谓上帝的粒子;而光子的质量则起源于希格斯场的真空期望值.  相似文献   
8.
采用粉料漂浮高温熔融法自制Nd3+掺杂硫系玻璃微球,研究了腔量子电动力学增强效应对稀土掺杂硫系玻璃微球荧光光谱的影响。把直径90.53μm的硫系玻璃微球与锥腰直径1.02μm的石英光纤锥耦合,将808nm抽运激光导入微球,荧光光谱存在分立的共振峰。根据米氏散射理论公式,计算得到TE偏振态下基模的三个共振峰位置,确定了这三个共振峰的模式序数。增强因子η≈1122,这表明微球荧光自发辐射速率增强幅度为1122倍。在基模条件下对原增强因子公式进行近似化简,并利用近似公式进行估算得到η≈1167,误差为4%。  相似文献   
9.
Through an analysis of the nearest neighbor level fields, we investigate the evolution of the electron spacing statistics for atoms in parallel electric and magnetic dynamics as electric field strength increases. In the 'inter-l mixing' predominant region, the electron shows complex dynamics while in the 'inter-n mixing' predominant region, its dynamics behaves in a relatively stable way and the characteristic quantity ξ shows a slight oscillation. Comparing the dynamics for hydrogen and barium, we find that the core effect makes the main contribution to the chaotic behavior in non-hydrogen atoms.  相似文献   
10.
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号