排序方式: 共有91条查询结果,搜索用时 46 毫秒
1.
2.
利用高光谱图像技术评判茶叶的质量等级 总被引:16,自引:0,他引:16
针对茶叶品质无损检测时内外品质难以同时兼顾的问题,利用高光谱图像技术检测茶叶质量.设计一套基于光谱仪的高光谱图像系统采集数据;通过主成分分析,从海量数据中优选出三个波长段的特征图像;从每个特征图像中分别提取平均灰度级、标准方差、平滑度、三阶矩、一致性和熵等6个基于统计矩的纹理特征参量,每个样本共有18个特征变量;再通过主成分分析对这18个特征变量进行压缩,提取8个主成分因子建立基于反向传播神经网络的茶叶等级判别模型.模型训练时的总体回判识别率为97%;预测时总体识别率为94%.结果表明,高光谱图像技术可以用于茶叶质量等级水平的评判. 相似文献
3.
基于高光谱图像技术的水果表面农药残留检测试验研究 总被引:13,自引:0,他引:13
以脐橙为研究对象,初步探讨了应用高光谱图像技术检测水果表面农药残留的方法.用蒸馏水把农药分别配置成1:20,1:100和1:1000倍的溶液.然后把同种不同浓度的溶液滴到10个洗净的脐橙表面,溶液量约为120 μL,200μL和400μL,脐橙表面形成一个3×3的矩阵形状.将水果放置到通风阴凉处放168 h后,拍摄图像.采集脐橙在625~725 nm范围的高光谱图像,应用主成分分析方法(PCA)获得特征波长的图像,应用第三主成分图像(PC-3)并经过适当的图像处理方法对脐橙表面的农药残留进行检测.检测结果表明,高光谱技术对检测较高浓度农药残留非常明显. 相似文献
4.
5.
在对原始数据进行虚拟维数估计的基础上,提出了一种基于最大距离端元提取+独立分量分析(Independent Component Analysis,ICA)的高光谱图像有损压缩方案.该方案首先应用最大距离端元抽取法提取高光谱数据各端元矢量,然后用快速独立分量分析生成独立分量,最后使用2维分层树集合分裂(Set Partitioning In Hierarchical Trees,SPIHT)算法对各独立分量图进行编码.计算机仿真结果证明,该算法在取得高压缩率的同时,能很好地保持数据的谱特征,是一种高效的三维数据压缩方法. 相似文献
6.
将变换矩阵分解为三角可逆矩阵(TERM)实现的整数Karhunen-Loève变换(IKLT),具有结构简单、完全可逆和同址运算的优点.将整数KLT和整数小波结合(IWT),提出了一种基于可逆整数变换的去相关方法:将KLT用于去除谱间冗余,并在对KLT的变换矩阵进行TERM分解的过程中,提出基于全局最大值选择主元的优化分解方法,保证了IKLT的准确度,同时明显降低了计算量;空间维的去相关变换采用基于提升结构的整数小波变换,同样保证了变换的完全可逆.采用不同编码策略,对不同场景的高光谱图像数据压缩的实验结果表明,基于整数混合变换的去相关方法能明显提高无损压缩比. 相似文献
7.
高光谱图像中基于端元提取的小目标检测算法 总被引:6,自引:1,他引:5
针对高光谱图像中小目标检测问题,提出了一种基于端元提取的目标检测算法。该算法利用主成分分析的变换矩阵来构造投影算子,把原始图像投影到该算子构成的正交子空间后,大概率的背景信息得到抑制,从而突出了小概率的目标;在完成背景信息抑制的基础上,利用迭代误差分析方法进行端元的自动提取;根据所提取出的目标端元的光谱,结合光谱角度匹配技术完成目标物的检测。为了验证新方法的有效性,利用高光谱数据进行了实验研究,并与经典的RX算法的检测结果相比较。实验结果表明提出的基于端元提取的算法不需要目标的任何先验知识就能达到比较好的目标探测效果,对RX算法检测效果不太理想的小目标也能准确识别。 相似文献
8.
基于高光谱图像的玉米种子特征提取与识别 总被引:5,自引:2,他引:3
玉米种子的形态特征是玉米品种识别的重要因素之一.采用高光谱成像系统获取9个品种共432粒玉米种子的高光谱反射图像,对图像进行校正和预处理,提取每个样本在563.6~911.4nm共55个波段范围内的形状特征.分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类.结果显示,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段的正确识别率.研究表明,该方法能充分利用高光谱图像中可见光和近红外区域的有效特征信息,较准确地鉴别玉米品种,为玉米品种的自动识别领域提供了一种新方法. 相似文献
9.
10.