首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   39篇
  国内免费   7篇
化学   156篇
力学   1篇
数学   2篇
物理学   7篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   27篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   15篇
  2015年   19篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有166条查询结果,搜索用时 173 毫秒
1.
Studies of two distinct classes of chromium(III) cage complexes are discussed. The first are compact oxo- and carboxylate cages, made by heating precursors to high temperature under a flow of nitrogen. One of these cages, [Cr12O9(OH)3(O2CCMe3)15], has an S = 6 spin ground state which proves a very interesting subject for study by EPR and MCD spectroscopy. Use of other carboxylates leads to other octa- and dodeca-nuclear complexes. The second class of compounds are homo- and hetero-metallic wheels and chains bridged by fluoride and carboxylates. These include the first heterometallic anti-ferromagnetically coupled ring systems and are being widely studied in areas as diverse as magnetic cooling and quantum information processing. The mechanism by which these unusual cyclic and acyclic structures form is discussed.  相似文献   
2.
The new compound CuSb2O3Br crystallize in the monoclinic space group Cc. The unit cell parameters are , , , β=90°, Z=16. The crystal structure is solved from single crystal data, R=0.0490. The compound show a layered structure with slabs from cubic Sb2O3 interspersed in between puckered layers of CuBr. The Sb(III) atoms have tetrahedral [SbO3E] coordination where E is the 5s2 lone pair, these units build up Sb4O4E6 cages. The CuBr layers resemble those in hexagonal CuBr but the Cu(I) ions have actually tetrahedral [CuBr3O] coordination. The Cu-O bonds link the Sb4O6 cages with the CuBr layers.  相似文献   
3.
Molecular or supramolecular level photoluminescence (PL) modulation combining chemical and photonic input/output signals together in an integrated system can provide potential high-density data memorizing and process functions intended for miniaturized devices and machines. Herein, a PL-responsive supramolecular coordination cage has been demonstrated for complex interactions with redox-active guests. PL signals of the cage can be switched and modulated by adding or retracting Fc derivatives or converting TTF into different oxidation states through chemical or photochemical pathways. As a result, reversible or stepwise PL responses are displayed by these host–guest systems because of the occurrence of photoinduced electron-transfer (PET) or fluorescence resonance energy transfer (FREnT) processes, providing unique nanodevice models bearing off/on logic gates or memristor-like sequential memory and Boolean operation functions.  相似文献   
4.
The design of porous materials for the recognition of multiple hydrocarbons is highly desirable for the energy-efficient separation and recognition of chemical feedstock. Herein, three new iso-structural porous discrete metal–organic cages of formula {[Pd3(NiPr)3PO]4(R-AN)6} (R-AN=anilate linkers) for the selective recognition of substituted aromatic hydrocarbons are reported. The tetrahedral cages 1 , 2 , and 3 containing anilate, chloranilate, and bromanilate linkers exhibited selective encapsulation of mesitylene, o-xylene, and p-xylene, respectively, over other analogous aromatic hydrocarbons. These selective encapsulations were driven by the variations in the portal diameters present at each of these cages and their interactions with the hydrocarbon guests. These observations are supported by mass spectrometry, NMR studies, and theoretical binding-energy calculations.  相似文献   
5.
Alkene metathesis has proven to be a powerful method for carbon carbon bond formation, particularly in the field of polymer and materials science. The availability of various tailor-made catalysts not only enables the synthesis of well-defined polymers but facilitates the development of functional, stimuli–responsive materials. This highlight, dedicated to Professor Robert Grubbs on his 75th birthday, focuses on the various research efforts in our group utilizing both alkene and alkyne metatheses and the interesting materials derived from them. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2935–2948  相似文献   
6.
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal–organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.  相似文献   
7.
We prepared core–shell polymer–silsesquioxane hybrid microcapsules from cage‐like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core–shell latex particles were achieved. The polymer latex particles were subsequently transformed into well‐defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High‐resolution TEM and nitrogen adsorption–desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2–3 nm. The nanospheres exhibited large surface areas (up to 486 m2 g?1) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g?1). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one‐step template‐free method for various applications.  相似文献   
8.
Krati Joshi 《Molecular physics》2015,113(19-20):2980-2991
Finite-temperature behaviour of a hollow golden cage (HGC) plays a crucialrole in its potential applications as a catalyst, drug delivery agent, contrasting agent and so on. This physico-chemical property of HGCs is not well understood so far. In that context, Born–Oppenheimer molecular dynamics (BOMD) simulations are performed on a well-known ‘free-standing’ HGC. The cluster considered in this study is the ground state Au18 cluster (a cage with a diameter of about >5.5 Å). The results thus obtained are compared with the BOMD simulation results reported earlier on Au32 icosahedron cage, a conformation with a diameter of nearly. The sphericity of both the clusters is studied using a shape deformation parameter as a function of time and temperature. These results are supplemented by radial distribution function at various temperatures. The observations and analysis of results indicate that, both the clusters retain an HGC conformation from 300 to 400 K, admitting structural fluxionality by the Au18 cluster. Remarkably, the Au18 cluster is able to maintain its hollowness and sphericity up to a high temperature of 1000 K. Underlying structural and electronic properties influencing the individualistic behaviour of cages are highlighted. Composition of the frontier molecular orbitals and the charge distribution play a crucial role in the finite-temperature behaviour of the Au cages. The conclusions are supplemented by supporting calculations on another degenerate ground state Au18 hollow cage and a well-known pyramidal Au18 cage at 300 and 400 K.  相似文献   
9.
A general multiscale simulation procedure is proposed to accurately predict the uptakes of pollution gases such as CO2, SO2, H2S, and CO in one of the most investigated porous organic cages CC3 by using a sophisticated force field vdW3 fitted by double hybrid functional (B2PLYP) with a dispersion correction (D3) separately for gas–gas and CC3‐gas interactions. The fitted vdW3 was used in grand canonical Monte Carlo simulations. Good comparison with the coupled cluster single and double excitation and the perturbative triples (CCSD(T))/complete basis set (CBS) limit interaction energies make the B2PLYP‐D3 results reliable for our purpose. The good agreement of simulated CO2 loading with experimental one and the low deviation in the fitting procedure for H2S and CO make our approach available in predicting gases in novel porous materials. © 2013 Wiley Periodicals, Inc.  相似文献   
10.
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3L6]6+ and a distorted tetrahedron [Pd4L8]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号