首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   38篇
  国内免费   52篇
化学   59篇
晶体学   1篇
力学   27篇
综合类   3篇
数学   669篇
物理学   81篇
  2024年   1篇
  2023年   7篇
  2022年   16篇
  2021年   12篇
  2020年   12篇
  2019年   19篇
  2018年   17篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   33篇
  2013年   67篇
  2012年   31篇
  2011年   46篇
  2010年   51篇
  2009年   73篇
  2008年   55篇
  2007年   47篇
  2006年   66篇
  2005年   25篇
  2004年   29篇
  2003年   32篇
  2002年   20篇
  2001年   15篇
  2000年   16篇
  1999年   17篇
  1998年   23篇
  1997年   19篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有840条查询结果,搜索用时 31 毫秒
1.
2.
《Discrete Mathematics》2022,345(5):112802
We study logical limit laws for uniform attachment random graphs. In this random graph model, vertices and edges are introduced recursively: at time n+1, the vertex n+1 is introduced together with m edges joining the new vertex with m different vertices chosen uniformly at random from 1,,n. We prove that this random graph obeys convergence law for first-order sentences with at most m?2 variables.  相似文献   
3.
4.
5.
A novel, green and effective approach to fabricate uniform functional spherical polymer particles remains a huge challenge. Herein, we present a novel one-pot approach superior to traditional precipitation polymerization, called precipitated droplets in-situ cross-linking (PDIC) polymerization, by which uniform particles are fabricated on large scale without any toxic organic solvents or stabilizers. With this approach, functional spherical polymer particles can be fabricated continuously only relying on gravity, and the preparation process is thus super-fast. For example, polyacrylic acid (PAA) hydrogel particles with ultra-high adsorption capacity are fabricated within only 60 s. Moreover, we have successfully fabricated different functional hydrogel particles, including anticoagulant, reinforced and bactericidal particles, based on the monomers of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AM) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (DMC), respectively. This approach has several advantages: (i) the technology is green; (ii) the size and porosity of the particles can be well-controlled; (iii) various functional spherical hydrogel particles can be fabricated by using corresponding monomers. More importantly, this approach fits the commercialization of functional hydrogel particles on demand.  相似文献   
6.
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography.  相似文献   
7.
Fourth-order cumulant is one of most widely used high-order cumulant for direction of arrival (DOA) estimation due to its ability of expanding the virtual array aperture as well as suppressing Gaussian noise. To address the two-dimensional (2D) DOA estimation problem, we propose a modified MUSIC scheme for uniform circular array (UCA) in this paper. Firstly, the fourth-order cumulant of UCA is considered to construct a new propagator, resulting in the elimination of a priori knowledge of the number of signals. Secondly, the UCA is transformed by beamspace transformation, reducing the time computational complexity of the algorithm since the two-dimensional grid search and singular value decomposition are avoided. And finally a low-rank recovery algorithm is adopted to improve the accuracy regarding the limited snapshots scenario. The numerical simulations validate the superiority of the proposed method.  相似文献   
8.
Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.  相似文献   
9.
10.
This paper studies maximum likelihood estimation for a parameterised elliptic diffusion in a manifold. The focus is on asymptotic properties of maximum likelihood estimates obtained from continuous time observation. These are well known when the underlying manifold is a Euclidean space. However, no systematic study exists in the case of a general manifold. The starting point is to write down the likelihood function and equation. This is achieved using the tools of stochastic differential geometry. Consistency, asymptotic normality and asymptotic optimality of maximum likelihood estimates are then proved, under regularity assumptions. Numerical computation of maximum likelihood estimates is briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号