首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.  相似文献   
2.
其鲁 《高分子科学》2006,(2):213-220
A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9×10-3 S cm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li /Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied. Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied.  相似文献   
3.
We study some approximation properties of Lagrange interpolation polynomial based on the zeros of (1-x^2)cosnarccosx. By using a decomposition for f(x) ∈ C^τC^τ+1 we obtain an estimate of ‖f(x) -Ln+2(f, x)‖ which reflects the influence of the position of the x's and ω(f^(r+1),δ)j,j = 0, 1,... , s,on the error of approximation.  相似文献   
4.
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4‘-diphenylmethane diisocyanate (MDI) were prepared by the solution method.Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O=C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C:O and the fact that almost all N-H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.  相似文献   
5.
The dynamic theological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems, due to its sensitive response to changes of structure for these heterogeneous polymers. In the present article, recent progresses in the studies on dynamic theology for heterogeneous polymer systems including polymeric composites filled with inorganic particles, thermo-oxidized polyolefins, phaseseparated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed, mainly depending on the results by the authors‘ group. By means of theological measurements, not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained, the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号