首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   36篇
  国内免费   26篇
化学   387篇
晶体学   1篇
力学   101篇
综合类   3篇
数学   865篇
物理学   328篇
  2023年   25篇
  2022年   41篇
  2021年   18篇
  2020年   30篇
  2019年   18篇
  2018年   19篇
  2017年   27篇
  2016年   27篇
  2015年   33篇
  2014年   57篇
  2013年   94篇
  2012年   155篇
  2011年   105篇
  2010年   65篇
  2009年   120篇
  2008年   108篇
  2007年   95篇
  2006年   67篇
  2005年   32篇
  2004年   36篇
  2003年   53篇
  2002年   20篇
  2001年   21篇
  2000年   18篇
  1999年   17篇
  1998年   34篇
  1997年   22篇
  1996年   26篇
  1995年   20篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   16篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   8篇
  1986年   13篇
  1985年   25篇
  1984年   20篇
  1983年   15篇
  1982年   23篇
  1981年   16篇
  1980年   11篇
  1979年   11篇
  1978年   25篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1967年   1篇
排序方式: 共有1685条查询结果,搜索用时 31 毫秒
1.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   
2.
3.
We consider a stochastic search model with resetting for an unknown stationary target aR with known distribution μ. The searcher begins at the origin and performs Brownian motion with diffusion constant D. The searcher is also armed with an exponential clock with spatially dependent rate r=r(), so that if it has failed to locate the target by the time the clock rings, then its position is reset to the origin and it continues its search anew from there. Denote the position of the searcher at time t by X(t). Let E0(r) denote expectations for the process X(). The search ends at time Ta=inf{t0:X(t)=a}. The expected time of the search is then R(E0(r)Ta)μ(da). Ideally, one would like to minimize this over all resetting rates r. We obtain quantitative growth rates for E0(r)Ta as a function of a in terms of the asymptotic behavior of the rate function r, and also a rather precise dichotomy on the asymptotic behavior of the resetting function r to determine whether E0(r)Ta is finite or infinite. We show generically that if r(x) is of the order |x|2l, with l>1, then logE0(r)Ta is of the order |a|l+1; in particular, the smaller the asymptotic size of r, the smaller the asymptotic growth rate of E0(r)Ta. The asymptotic growth rate of E0(r)Ta continues to decrease when r(x)Dλx2 with λ>1; now the growth rate of E0(r)Ta is more or less of the order |a|1+1+8λ2. Note that this exponent increases to when λ increases to and decreases to 2 when λ decreases to 1. However, if λ=1, then E0(r)Ta=, for a0. Our results suggest that for many distributions μ supported on all of R, a near optimal (or optimal) choice of resetting function r in order to minimize Rd(E0(r)Ta)μ(da) will be one which decays quadratically as Dλx2 for some λ>1. We also give explicit, albeit rather complicated, variational formulas for infr0Rd(E0(r)Ta)μ(da). For distributions μ with compact support, one should set r= off of the support. We also discuss this case.  相似文献   
4.
Wireless Sensor Networks (WSN) are widely used in recent years due to the advancements in wireless and sensor technologies. Many of these applications require to know the location information of nodes. This information is useful to understand the collected data and to act on them. Existing localization algorithms make use of a few reference nodes for estimating the locations of sensor nodes. But, the positioning and utilization of reference nodes increase the cost and complexity of the network. To reduce the dependency on reference nodes, in this paper, we have developed a novel optimization based localization method using only two reference nodes for the localization of the entire network. This is achieved by reference nodes identifying a few more nodes as reference nodes by the analysis of the connectivity information. The sensor nodes then use the reference nodes to identify their locations in a distributive manner using Artificial Hummingbird Algorithm (AHA). We have observed that the localization performance of the reported algorithm at a lower reference node ratio is comparable with other algorithms at higher reference node ratios.  相似文献   
5.
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).  相似文献   
6.
《印度化学会志》2021,98(12):100241
Process optimization in a mixer-settler is of great importance. Optimization algorithm of particle swarm optimization is one of the evolutionary algorithms to solve optimization problem which is used in many fields. In this study, the optimal condition is calculated in finite volume method in terms of the number of baffles, inlet velocity of fluid, and impeller speed in a mixer-settler with a specific dimension that can be extended to industrial dimensions using the PSO algorithm and the numerical solution of Navier-Stokes equations and k-ε standard.  相似文献   
7.
8.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   
9.
Vicinal diketones, namely diacetyl (DC) and pentanedione (PN), are compounds naturally found in beer that play a key role in the definition of its aroma. In lager beer, they are responsible for off-flavors (buttery flavor) and therefore their presence and quantification is of paramount importance to beer producers. Aiming at developing an accurate quantitative monitoring scheme to follow these off-flavor compounds during beer production and in the final product, the head space solid-phase microextraction (HS-SPME) analytical procedure was tuned through experiments planned in an optimal way and the final settings were fully validated. Optimal design of experiments (O-DOE) is a computational, statistically-oriented approach for designing experiences that are most informative according to a well-defined criterion. This methodology was applied for HS-SPME optimization, leading to the following optimal extraction conditions for the quantification of VDK: use a CAR/PDMS fiber, 5 ml of samples in 20 ml vial, 5 min of pre-incubation time followed by 25 min of extraction at 30 °C, with agitation. The validation of the final analytical methodology was performed using a matrix-matched calibration, in order to minimize matrix effects. The following key features were obtained: linearity (R2 > 0.999, both for diacetyl and 2,3-pentanedione), high sensitivity (LOD of 0.92 μg L−1 and 2.80 μg L−1, and LOQ of 3.30 μg L−1 and 10.01 μg L−1, for diacetyl and 2,3-pentanedione, respectively), recoveries of approximately 100% and suitable precision (repeatability and reproducibility lower than 3% and 7.5%, respectively). The applicability of the methodology was fully confirmed through an independent analysis of several beer samples, with analyte concentrations ranging from 4 to 200 g L−1.  相似文献   
10.
mAbs are widely used in cancer therapy. Their compounding, performed just before their administration to patients, is executed in a production unit of the hospital. Identification of these drugs, individually prepared in bags for infusion before patient administration, is of paramount importance to detect potential mistakes during compounding stage. A fast and reliable analytical method based on CZE combined to a cationic capillary coating (hexadimethrine bromide) was developed for identification of the most widely used compounded therapeutic for cancer therapy (bevacizumab, cetuximab, rituximab, and trastuzumab). Considering the high structural and physico‐chemical similarities of these mAbs, an extensive optimization of the BGE composition has been performed. The addition of perchlorate ions and polysorbate in the BGE greatly increased the resolution. To validate the method, an internal standard was used and the relative migration times (RTm) were estimated. Very satisfactory RSDs of the RTm for rituximab (0.76%), cetuximab (0.46%), bevacizumab (0.31%), and trastuzumab (0.60%) were obtained. The intraday and interday RSD of the method were less than 0.32 and 1.3%, respectively for RTm. Significant differences between theses RTms have been demonstrated allowing mAbs identification. Finally, accurate mAbs identification has been demonstrated by a blind test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号