首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   8篇
  国内免费   2篇
化学   12篇
晶体学   1篇
力学   2篇
物理学   18篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   4篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2003年   3篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
  1979年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Electrofreezing experiments of super-cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3O+) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3 ions self-assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice-like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3 and guanidinium (Gdm+), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl and SO42− ions of different configurations reduce the icing temperature.  相似文献   
2.
热压电变分原理   总被引:7,自引:0,他引:7  
热释电介的许多传感器及机敏结构或中的关键材料,本文系统地讨论了在基础理论和数值计算中极具重要地位的各类变分原理,包括准静态变分原理、动态变分原理和关于固有频率的变分原理。最后建立了关于静态压电要板的变分原理,并由此导出了各向异性压电板的控制方程及边界条件。  相似文献   
3.
4.
By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x‐cut faces of LiTaO3, we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2, flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.  相似文献   
5.
ABSTRACT

Hydroxyapatite (HA) is a major component of bone in humans and animals. Until about 10 years ago, it was considered to have a centrosymmetric crystal structure and could not contribute to the well-known piezoelectric effect in bone. This review describes the theoretical and experimental studies that showed that HA does have a non-centrosymmetric structure. Recent experiments have shown that HA exhibits piezoelectricity, pyroelectricity, and ferroelectricity. It has been made in the form of thick films and as space-charge electrets. It has an important biomedical application as an implant for bone cell attachment and growth.  相似文献   
6.
In this study, it was aimed to increase the piezoelectric and pyroelectric properties of electrospun polyvinylidene fluoride (PVDF) nanofibers simultaneously by using specific nanofillers. Graphene oxide (GO), graphene, and halloysite nanotubes with different concentrations (0, 0.05, 0.4, and 1.6% wt/wt) were combined with PVDF solution and were fabricated in the form of nanofibers through electrospinning. Pyroelectric properties of samples were measured by submerging sealed samples in hot water (360°K) and ice (270°K). The piezoelectric properties of the samples were evaluated through bending tests. The microstructural, mechanical, and thermal properties of the electrospun PVDF nanocomposite were investigated using scanning electron microscope, Instron instrument, and thermogravimetric analysis, respectively. To further support the experimental observations for generating electric voltage in the bended nanogenerator, the PVDF nanogenerator (PNG) was also modeled by a finite element analysis based on the theory of linear piezoelectricity using COMSOL Multiphysics simulation software. Experimental results showed that adding nanofillers could improve the piezoelectric and pyroelectric properties of all samples, associated with the increment of β‐phase in the nanofibers. It was concluded that adding nanofillers could increase pyroelectricity about 50% more than piezoelectricity in pristine PVDF nanofiber web. The PNG containing 1.6 wt% GO showed the highest efficiency in terms of piezoelectricity and pyroelectricity. In addition, the results showed that the ratio of piezoelectric to pyroelectric coefficients was constant (~1.5) and it was independent of the nanofiller type and content. The effect of external force and vibration frequency on the output voltage was also investigated. Increasing the compressive force and vibration frequency caused a greater output voltage. Finally, the fabricated nanogenerator was integrated on insole and elbow to investigate its energy harvesting capabilities from body movement.  相似文献   
7.
8.
研究了利用弛豫型铁电三元聚合物薄膜P(VDF-TrFE-CFE)的热释电性质,以温度波动作为初始能量形式进行热电能量的采集。由于该聚合物薄膜在发生由温度变化诱导的纳米极性区极化机制转换时,介电常数表现出明显的非线性变化,所以可以结合Ericsson循环实现热电能量采集。实验结果显示,最佳能量采集温度区间为20~-20℃,利用不同温度下的单极性电滞回线进行Ericsson循环模拟,两种模拟方式分别实现能量采集最大值和最小值,并从微观角度给出了两种模式的解释。同时研究了温度波动和外加电场对能量采集的影响。在外加电场100 kV·mm-1、温度波动为40℃的情况下,能量采集值达到3483 mJ·cm-3。与单晶材料相比,能量采集值提高了10倍。当工作温度降低至室温时,材料具有柔性,在能量采集方面具有应用潜力。  相似文献   
9.
10.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N?1, and pyroelectric coefficient of p≈25.8 μC m?2 K?1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号