首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   41篇
  国内免费   10篇
化学   3篇
力学   56篇
综合类   1篇
数学   244篇
物理学   36篇
  2023年   7篇
  2022年   2篇
  2021年   6篇
  2020年   11篇
  2019年   7篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   16篇
  2014年   13篇
  2013年   16篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   21篇
  2008年   10篇
  2007年   17篇
  2006年   15篇
  2005年   21篇
  2004年   14篇
  2003年   15篇
  2002年   21篇
  2001年   13篇
  2000年   16篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
1.
Parallel preconditioners are presented for the solution of general linear systems of equations. The computation of these preconditioners is achieved by orthogonal projections related to the Frobenius inner product. So, minM∈??AM?IF and matrix M0∈?? corresponding to this minimum (?? being any vectorial subspace of ??n(?)) are explicitly computed using accumulative formulae in order to reduce computational cost when subspace ?? is extended to another one containing it. Every step, the computation is carried out taking advantage of the previous one, what considerably reduces the amount of work. These general results are illustrated with the subspace of matrices M such that AM is symmetric. The main application is developed for the subspace of matrices with a given sparsity pattern which may be constructed iteratively by augmenting the set of non‐zero entries in each column. Finally, the effectiveness of the sparse preconditioners is illustrated with some numerical experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Given the operator product BA in which both A and B are symmetric positive‐definite operators, for which symmetric positive‐definite operators C is BA symmetric positive‐definite in the C inner product 〈x, yC? This question arises naturally in preconditioned iterative solution methods, and will be answered completely here. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear  相似文献   
4.
黄翔 《运筹学学报》2005,9(4):74-80
近年来,决定椭圆型方程系数反问题在地磁、地球物理、冶金和生物等实际问题上有着广泛的应用.本文讨论了二维的决定椭圆型方程系数反问题的数值求解方法.由误差平方和最小原则,这个反问题可化为一个变分问题,并进一步离散化为一个最优化问题,其目标函数依赖于要决定的方程系数.本文着重考察非线性共轭梯度法在此最优化问题数值计算中的表现,并与拟牛顿法作为对比.为了提高算法的效率我们适当选择加快收敛速度的预处理矩阵.同时还考察了线搜索方法的不同对优化算法的影响.数值实验的结果表明,非线性共轭梯度法在这类大规模优化问题中相对于拟牛顿法更有效.  相似文献   
5.
Typical behaviour of the solution of a linear system of equations obtained iteratively by Krylov methods can be characterized by three stages. Initially the residual diminishes steadily; this is followed by stagnation and finally rapid convergence near the algebraic grade. This study examines this behaviour in terms of the concepts of approximately invariant subspace and what we have called the analytic grade of a Krylov sequence. It is shown how the small Ritz values play a vital role in the convergence and how this knowledge helps in the construction of an effective preconditioner. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
Integration of the subsurface flow equation by finite elements (FE) in space and finite differences (FD) in time requires the repeated solution to sparse symmetric positive definite systems of linear equations. Iterative techniques based on preconditioned conjugate gradients (PCG) are one of the most attractive tool to solve the problem on sequential computers. A present challenge is to make PCG attractive in a parallel computing environment as well. To this aim a key factor is the development of an efficient parallel preconditioner. FSAI (factorized sparse approximate inverse) and enlarged FSAI relying on the approximate inverse of the coefficient matrix appears to be a most promising parallel preconditioner. In the present paper PCG using FSAI, diagonal and pARMS (parallel algebraic recursive multilevel solvers) preconditioners is implemented on the IBM SP4/512 and CLX/768 supercomputers with up to 32 processors to solve underground flow problems of a large size. The results show that FSAI may allow for a parallel relative efficiency larger than 50% on the largest problems with p=32 processors. Moreover, FSAI turns out to be significantly less expensive and more robust than pARMS. Finally, it is shown that for p in the upper range may be much improved if PCG–FSAI is implemented on CLX.  相似文献   
7.
Summary. The convergence rate of Krylov subspace methods for the solution of nonsymmetric systems of linear equations, such as GMRES or FOM, is studied. Bounds on the convergence rate are presented which are based on the smallest real part of the field of values of the coefficient matrix and of its inverse. Estimates for these quantities are available during the iteration from the underlying Arnoldi process. It is shown how these bounds can be used to study the convergence properties, in particular, the dependence on the mesh-size and on the size of the skew-symmetric part, for preconditioners for finite element discretizations of nonsymmetric elliptic boundary value problems. This is illustrated for the hierarchical basis and multilevel preconditioners which constitute popular preconditioning strategies for such problems. Received May 3, 1996  相似文献   
8.
An efficient preconditioner is developed for solving the Helmholtz problem in both high and low frequency (wavenumber) regimes. The preconditioner is based on hierarchical unknowns on nested grids, known as incremental unknowns (IU). The motivation for the IU preconditioner is provided by an eigenvalue analysis of a simplified Helmholtz problem. The performance of our preconditioner is tested on the iterative solution of two‐dimensional electromagnetic scattering problems. When compared with other well‐known methods, our technique is shown to often provide a better numerical efficacy and, most importantly, to be more robust. Moreover, for the best performance, the number of IU levels used in the preconditioner should be designed for the coarsest grid to have roughly two points per linear wavelength. This result is consistent with the conventional sampling criteria for wave phenomena in contrast with existing IU applications for solving the Laplace/Poisson problem, where the coarsest grid comprises just one interior point. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
9.
In computer graphics, in the radiosity context, a linear system Φx=b must be solved and there exists a diagonal positive matrix H such that H Φ is symmetric. In this article, we extend this property to complex matrices: we are interested in matrices which lead to Hermitian matrices under premultiplication by a Hermitian positive‐definite matrix H. We shall prove that these matrices are self‐adjoint with respect to a particular innerproduct defined on ?n. As a result, like Hermitian matrices, they have real eigenvalues and they are diagonalizable. We shall also show how to extend the Courant–Fisher theorem to this class of matrices. Finally, we shall give a new preconditioning matrix which really improves the convergence speed of the conjugate gradient method used for solving the radiosity problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
10.
Sparse approximate inverse (SAI) techniques have recently emerged as a new class of parallel preconditioning techniques for solving large sparse linear systems on high performance computers. The choice of the sparsity pattern of the SAI matrix is probably the most important step in constructing an SAI preconditioner. Both dynamic and static sparsity pattern selection approaches have been proposed by researchers. Through a few numerical experiments, we conduct a comparable study on the properties and performance of the SAI preconditioners using the different sparsity patterns for solving some sparse linear systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号