首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2812篇
  免费   384篇
  国内免费   269篇
化学   1901篇
晶体学   34篇
力学   621篇
综合类   13篇
数学   117篇
物理学   779篇
  2024年   1篇
  2023年   32篇
  2022年   49篇
  2021年   61篇
  2020年   144篇
  2019年   94篇
  2018年   96篇
  2017年   137篇
  2016年   175篇
  2015年   132篇
  2014年   157篇
  2013年   304篇
  2012年   152篇
  2011年   182篇
  2010年   159篇
  2009年   187篇
  2008年   159篇
  2007年   177篇
  2006年   177篇
  2005年   160篇
  2004年   132篇
  2003年   107篇
  2002年   92篇
  2001年   69篇
  2000年   55篇
  1999年   48篇
  1998年   37篇
  1997年   26篇
  1996年   29篇
  1995年   20篇
  1994年   31篇
  1993年   19篇
  1992年   14篇
  1991年   11篇
  1990年   12篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1971年   2篇
  1957年   2篇
排序方式: 共有3465条查询结果,搜索用时 15 毫秒
1.
蒋峰景  宋涵晨 《化学进展》2022,34(6):1290-1297
液流电池是一种安全性高、使用寿命长、可扩展的大规模储能系统,可以协助电网调峰储能,提高能源利用率,发展前景广阔。双极板是液流电池的重要组成部分。功能上起到了分隔、串联电池、传导电流、为电堆提供结构支撑等作用。从成本构成角度看,双极板的价格占电堆成本的比重也较大。开发高性能、低成本的双极板对加快液流电池的商业化应用具有重要意义,也是目前业界的迫切需求。虽然文献上报道了许多针对液流电池双极板开发的工作,但是目前高性能、低成本的液流电池双极板产品仍无法充分满足市场需求。本文着重介绍了石墨基复合双极板的研究现状,介绍了材料选择、工艺流程对关键性能的影响,对相关工作进行了评述,并为液流电池双极板的开发提出了建议。  相似文献   
2.
A simple and efficient chemical method was developed to graft directly carbon nanofibers (CNFs) onto carbon fiber (CF) surface to construct a CF‐CNF hierarchical reinforcing structure. The grafted CF reinforcements via covalent ester linkage at low temperature without any usage of dendrimer or catalyst was investigated by FTIR, X‐ray photoelectron spectroscopy, Raman, scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis, and single fiber tensile testing. The results indicated that the CNFs with high density could effectively increase the polarity, wettability, and roughness of the CF surface. Simultaneous enhancements of the interfacial shear strength, flexural strength, and dynamic mechanical properties as well as the tensile strength of CFs were achieved, for an increase of 75.8%, 21.9%, 21.7%, and 0.5%, respectively. We believe the facile and effective method may provide a novel and promising interface design strategy for next‐generation advanced composite structures.  相似文献   
3.
A novel magnetic metal‐organic framework composite was prepared by a self‐assembly approach. The material properties were characterized by Fourier‐transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetry and differential thermogravimetric analysis, and X‐photoelectron spectroscopy. Then, the as‐prepared material was used as an adsorbent and indicated great enrichment ability toward glyphosate, glufosinate, bialaphos, and their main metabolites aminomethylphosphonic acid and 3‐methylphosphinicopropionic acid. Based on this, an efficient magnetic solid‐phase extraction method combined with ultra high performance liquid chromatography with high‐resolution mass spectrometry for the pretreatment and determination of five target compounds in environmental waters was established. Parameters that could impact on the adsorption performance had been studied in detail. The proposed method was successfully applied for the simultaneous determination of glyphosate, glufosinate, bialaphos, and their main metabolites aminomethylphosphonic acid and 3‐methylphosphinicopropionic acid in environmental water with recoveries in range of 86.2–104.6% with relative standard deviations less than 10%. Desired linearity was achieved varying from 1 to 100 μg/L for five target analytes, respectively. The limits of detection were between 0.01 and 0.03 μg/L.  相似文献   
4.
Nickel oxide (NiO) has emerged as one of the most promising transition-metal oxides (TMOs) for electrochemical capacitors, batteries, catalysis, and electrochromic films, owing to its cost-effectiveness, abundance, and well-defined electrochemical properties. Recent studies have identified that mixing NiO with graphene or graphene derivatives results in novel composites with synergistic effects and superior electrochemical performance. This review summarizes the latest advances in composites of NiO with graphene or graphene derivatives. The synthetic strategies, morphologies, and electrochemical performance of these composites are introduced, as well as their electrochemical applications in supercapacitors, batteries, sensors, catalysis, and so forth. Finally, tentative conclusions and assessments regarding the opportunities and challenges for the future development of these composites and other TMOs/graphene or graphene-derived composites are presented.  相似文献   
5.
Additive manufacturing (AM), otherwise known as three‐dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education, and medicine. Although a considerable amount of progress has been made in this field, additional research work is required to overcome various remaining challenges. Recently, one of the actively researched areas lies in the AM of smart materials and structures. Electroactive materials incorporated in 3D printing have given birth to 4D printing, where 3D printed structures can perform as actuating and/or sensing systems, making it possible to deliver electrical signals under external mechanical stimuli and vice versa. In this paper, we present a lightweight, low cost piezoelectric material based on the dispersion of inorganic ferroelectric submicron particles in a polymer matrix. We report on how the proposed material is compatible with the AM process. Finally, we discuss its potential applications for healthcare, especially in smart implants prostheses. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 109–115  相似文献   
6.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
7.
Different inorganic/organic photocomposites based on polyoxometalate (POM) nanoparticles have been developed for photocatalytic applications. Currently, polyoxometalate nanoparticles have been successfully in-situ embedded into an acrylate polymer network by photopolymerization upon mild visible light irradiation at 405 nm. The proposed POM/polymer photocomposites have been characterized using complementary techniques for a better understanding of their photocatalytic activity. Interestingly, the obtained photocomposites exhibit high rigidity, excellent thermal stability, a non-negligible porosity and new functionalities such as light reactivity and redox properties. Moreover, developed composites showed efficient catalytic activity for the color removal of aqueous solutions of erythrosine and rose Bengal under Light Emitting Diodes LED@375 nm irradiation reaching 80 and 90% as a final color removal, respectively.  相似文献   
8.
Hexagonal boron nitride (BN) platelets, also known as white graphite, are often used to improve the thermal conductivities of polymeric matrices. Due to the poor interfacial compatibility between BN platelets and polymeric matrices, in this study, polyrhodanine (PRd) was used to modify BN platelets and prepared functionalized BN-PRd platelets, thereby enhancing the interfacial interaction between the thermal conductive filler and polymeric matrix. Then, BN-PRd platelets were dispersed into the nitrile butadiene rubber (NBR) matrix to yield high thermally conductive composites. The presence of N? C═S groups in PRd allowed the combination of PRd and NBR chains containing stable covalent bonds via vulcanization reaction. The thermal conductivity of the as-prepared 30 vol% BN-PRd/NBR composite reached 0.40 W/mK, representing an increment of 135% over pure NBR (0.17 W/mK). In addition, the largest tensile strength of NBR composite containing 30 vol% BN-PRd platelets was 880% times of pure NBR. The 30 vol% BN-PRd/NBR composite also displayed a relatively high dielectric constant (9.35 at 100 Hz) and a low dielectric loss tangent value (0.07 at 100 Hz), indicating their usefulness as dielectric flexible materials of microelectronics. In sum, the simplicity and good efficiency of formation of covalent bonds between boron nitride and rubber chains look very promising for large-scale industrial production of high thermally conductive composites.  相似文献   
9.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   
10.
Understanding the complicated failure mechanisms of hierarchical composites such as fiber yarns is essential for advanced materials design. In this study, we developed a new Monte Carlo model for predicting the mechanical properties of fiber yarns that includes statistical variation in fiber strength. Furthermore, a statistical shear load transfer law based on the shear lag analysis was derived and implemented to simulate the interactions between adjacent fibers and provide a more accurate tensile stress distribution along the overlap distance. Simulations on two types of yarns, made from different raw materials and based on distinct processing approaches, predict yarn strength values that compare favorably with experimental measurements. Furthermore, the model identified very distinct dominant failure mechanisms for the two materials, providing important insights into design features that can improve yarn strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号