首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   3篇
化学   2篇
力学   3篇
物理学   8篇
  2020年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The geothermal steam turbines are exposed to mechanisms of corrosion/erosion that weakens its components and reduces their useful life. Due to this problem work has been done in application and characterization of coating in solid state by means of the technique of high-velocity Oxygen Fuel (HVOF), evaluating the corrosion rate (Vcorr) at high temperature of MCrAlY and Diamalloy 4006 coatings deposited on stainless steel SS304. Test was performance in an Autoclave at 170 0C using a modified geothermal fluid as electrolyte. Open circuit potential was monitoring during 24 hours until the system reached the equilibrium. After that, Polarization and Impedance Spectroscopy techniques were used to evaluate the specimens. For microstructure characterization; X–ray Diffraction (XRD), electron sweep microscope (SEM) and Optical microscope were applied. Results show that both coatings (Diamalloy 4006 and MCrAlY), have low current density compare with the substrate, which is an indicative of a lower corrosion rate due to the passive behavior of the species deposited on the Surface of the coating.  相似文献   
2.
Microstructured (atomized) and nanostructured (milled) Fe60Al40 powders together with their corresponding coatings synthesized by High Velocity Oxy-fuel (HVOF) or Atmospheric Plasma Spray (APS) thermal spraying techniques have been characterized by Mössbauer Spectroscopy (MS) and X-ray Diffraction (XRD). The evolution of the microstructure and the atomic ordering degree in the powders and coatings are discussed at the light of the various processing conditions. The operational correlation between the parameters of the duplex morphology of coatings and the processing parameters is discussed.  相似文献   
3.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   
4.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   
5.
Several typical high-velocity oxy-fuel (HVOF)-sprayed coatings, including WC-10Co4Cr coatings, Co-based coatings, WC-10Co4Cr/Co-based composite coatings, and Fe-based amorphous/nanocrystalline coatings were fabricated, and their cavitation behavior was evaluated in deionized water. Further, in-situ SEM surface observations were used to understand the microstructure of tested coatings. The results show that cavitation erosion initially occurred at pre-existing defects in the coatings. Meanwhile, it was found that cavitation erosion damage of the WC-10Co4Cr/Co-based composite coating, which contained a hard reinforcing phase (WC-10Co4Cr phase) and a soft matrix phase (Co-based phase), preferentially occurred at or around pores and microcracks in the reinforcement, rather than in the defect free matrix. This suggested that defects were a critical contributing factor to cavitation damage of the composite coatings. Furthermore, a mechanism was suggested to explicate the cavitation behavior of composite coatings. The approach of using in-situ SEM surface observations proved to be useful for the analysis of the cavitation mechanism of engineering materials and protective coatings.  相似文献   
6.
Wear processes are always present in components exposed to different work situations. Hydraulic turbines in electric power generation and ship propellers are good examples of components subject to wear and corrosion. One way to protect these components, for example, is the deposition of coatings by thermal spray processes. Indeed, there are several wear or corrosion mechanisms acting simultaneously, and the validation of the mechanisms separately, is not the best way to select the better material. When materials have passivation as protective mechanism against corrosion, the mass loss due erosion can affect the materials selection. This paper study the combined effect of the corrosion on the cavitation mass loss, as well as, the cavitation mass loss influence on the corrosion properties of a chromium carbide Cr3C2-25NiCr coating. Despite of the modification of the erosion mechanism on the cavitated samples under 3,5% NaCl solution, the volume loss did not show any significant alteration. Cavitation mass loss increase the corrosion process, reducing significantly the corrosion potential and raising the corrosion current. It was observed that the cavitation of the Cr3C2-25NiCr HVOF coating influences much more the corrosion kinetics, than the corrosion affects the cavitation resistance.  相似文献   
7.
There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH)2, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.  相似文献   
8.
采用两种喷涂技术制备铁基合金涂层的摩擦磨损特性研究   总被引:8,自引:0,他引:8  
利用超音速火焰喷涂(HVOF)技术和等离子喷涂(ASP)技术,分别在0Cr13Ni5Mo不锈钢基体上制备了铁基非晶合金涂层和铁基非晶纳米晶涂层,研究了2种涂层在室温下的摩擦磨损特性,并探讨其磨损机理.结果表明,2种热喷涂涂层中以等离子喷涂工艺制备的铁基非晶纳米晶涂层的耐磨性较好,其主要原因是等离子喷涂涂层具有高硬度的同时在涂层中弥散分布着纳米晶颗粒,两者共同增强了涂层的耐磨性能.采用等离子喷涂技术制备的涂层的磨损机制主要为磨粒磨损,而超音速火焰喷涂技术制备的涂层的磨损机理为粘着磨损和疲劳磨损的综合作用,其中以疲劳磨损为主.  相似文献   
9.
An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings   总被引:1,自引:0,他引:1  
Present work is an investigation of slurry erosion behavior of WC-CoCr cermet coatings deposited with two different WC grain sizes. HVOF thermal spray process was employed due to its high velocity and low flame temperature characteristics resulting in quality coating. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control its heating. Slurry erosion testing was performed using a pot-type slurry erosion tester to evaluate slurry erosion resistance of the coatings. Two parameters were considered for testing viz. erodent particle size and slurry concentration. Surface morphology was examined using SEM images and phase identification was done by XRD. The erosion behavior and mechanism of material removal was studied and discussed based on microstructural examination. It was observed that WC-CoCr cermet coating deposited with fine grain WC exhibits higher slurry erosion resistance under all testing conditions as compared to conventional cermet coating.  相似文献   
10.
WC-Co-Cr涂层的孔率和层状结构对冲蚀行为的影响   总被引:2,自引:0,他引:2  
李阳  李曙  刘阳  王华仁 《摩擦学学报》2011,31(3):228-234
用3种高速火焰热喷涂设备将6种商业粉末喷涂在0Cr13Ni5Mo不锈钢基材上,制成结构不同的WC-Co-Cr涂层。用自行研制的料浆罐冲蚀试验机对9种涂层和基材的冲蚀行为进行研究,重点分析气孔率和层状结构对涂层耐冲蚀性能的影响。结果表明:气孔率和层状结构均降低了涂层的耐冲蚀性能,低速低料浆浓度时,气孔率对涂层耐冲蚀能力的影响较层状结构严重,气孔率高的涂层耐冲蚀性能甚至不如基材;高速和高料浆浓度时,层状结构明显的涂层耐冲蚀性能更差。本文探讨了利用单摆冲击划痕法测定涂层比能耗来定量表征层状结构的有效性,讨论了利用涂层气孔率和比能耗的测量结果推测其耐冲蚀性能的可能性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号