首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   9篇
  国内免费   39篇
化学   278篇
晶体学   7篇
力学   61篇
数学   4篇
物理学   91篇
  2023年   12篇
  2022年   6篇
  2021年   14篇
  2020年   16篇
  2019年   8篇
  2018年   12篇
  2017年   24篇
  2016年   40篇
  2015年   20篇
  2014年   13篇
  2013年   30篇
  2012年   6篇
  2011年   35篇
  2010年   25篇
  2009年   32篇
  2008年   29篇
  2007年   16篇
  2006年   20篇
  2005年   18篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有441条查询结果,搜索用时 62 毫秒
1.
Poly(ethylene terephthalate) (PET) has been mixed with fluorite (CaF2) particles to obtain micro- and nano-composites aiming to obtain a hybrid multifilament. In first term, the use of two montanic waxes and an amide wax as dispersing agents towards the compatibilization of the inorganic and organic components of the CaF2/PET composite were considered. To do this, non-isothermal crystallization studies by differential scanning calorimetry have been carried out. Moreover, the influence of the CaF2 particle size and concentration on the thermal properties of the system have been also studied by this technique. Finally, the extrapolation of the results has materialised as a novel PET/CaF2 hybrid multifilament. Thermal and mechanical properties and molecular weight of the multifilament have been as well evaluated.  相似文献   
2.
牙科复合树脂由于色泽美观,在口腔临床上具有广泛的应用。但其仍然存在边缘缝隙的问题,从而导致继发龋的发生。再矿化复合树脂中的生物活性填料会释放能够再矿化的钙、磷离子,促使材料表面形成矿化层,能够抑制二次龋的发生。本文介绍了不同种类、含量、粒径大小和表面改性的生物活性填料对复合树脂物理、机械性能的影响,分析了再矿化复合树脂的再矿化行为,提出了再矿化复合树脂亟待解决的问题和研究难点,展望了复合树脂的研究方向。  相似文献   
3.
Lead/copper tannate (TA-Pb/Cu) and lead/copper salicylate (SA-Pb/Cu) interface catalyst shells are established on the surface of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) via in situ coprecipitation to prepare HMX@TA-Pb/Cu and HMX@SA-Pb/Cu composites. The structures and properties of the obtained HMX@TA-Pb/Cu and HMX@SA-Pb/Cu composites are characterized in detail. Molecular dynamics simulations are performed to study the adsorption mechanism of TA-Pb/Cu and SA-Pb/Cu on HMX surface. The residues after HMX@TA-Pb/Cu and HMX@SA-Pb/Cu combusted in air are collected and characterized to study the catalytic effect of TA-Pb/Cu and SA-Pb/Cu on combustion. The study results show that TA-Pb/Cu shells are coated on HMX surface due to the excellent membrane-forming properties of TA, while SA-Pb/Cu shells are embedded in the gullies and holes of HMX surface. TA-Pb/Cu and SA-Pb/Cu shells can decrease the mechanical sensitivities and catalyze the decomposition and combustion of HMX, and the catalytic effects of in situ coprecipitation are better than that of physical mixing. In addition, the phase transition temperature of HMX in HMX@TA-Pb/Cu is increased while that of HMX@SA-Pb/Cu is decreased, illustrating that TA-Pb/Cu can enhance the thermal stability of HMX while SA-Pb/Cu can catalyze the phase transition of HMX.  相似文献   
4.
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3BX6 type cyanometallate [Ph2(iPrNH)2P]3[Fe(CN)6] ( 1 ), which shows a ferroelectric saturation polarization (Ps) of 3.71 μC cm−2. Compound 1 exhibits a high electrostrictive coefficient (Q33) of 0.73 m4 C−2, far exceeding those of piezoceramics (0.034–0.096 m4 C−2). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1 -TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm−2.  相似文献   
5.
It remains a challenge to use a simple approach to fabricate a multi-shape memory material with high mechanical performances. Here,we report a triple crosslinking design to construct a multi-shape memory epoxy vitrimer(MSMEV), which exhibits high mechanical properties,multi-shape memory property and malleability. The triple crosslinking network is formed by reacting diglycidyl ether of bisphenol F(DGEBF) with4-aminophenyl disulfide, γ-aminopropyltriethoxysilane(APTS) and poly(propylene glycol) bis(2-aminopropyl ether)(D2000). The triple crosslinking manifests triple functions: the disulfide bonds and the silyl ether linkages enable malleability of the epoxy network; the silyl ether linkages impart the network with high heterogeneity and broaden the glass transition region, leading to multi-shape memory property; a small amount of D2000 increases the modulus difference between the glassy and rubbery states, thereby improving the shape fixity ratio. Meanwhile,the high crosslinking density and rigid structure provide the MSMEV with high tensile strength and Young's modulus. Moreover, integrating carbon fibers and MSMEV results in shape memory composites. The superior mechanical properties of the composites and the recyclability of carbon fiber derived from the dissolvability of MSMEV make the composites hold great promise as structural materials in varied applications.  相似文献   
6.
Homogeneous xPbO?(1?x) P2O5 glasses where 0 % :σ x<100 % have been successfully synthesized using a melt‐quenching method. The short range structures of the prepared samples were examined by Fourier transform infrared spectroscopy, x‐powder diffraction and scanning electron microscopy. The most stable vitreous phase is of composition 45 mol%PbO‐55 mol%P2O5; it was loaded with zinc volume fraction. We carried out experimental and simulative investigations of the electrical characteristics of p? n junction; the obtained results indicated that conductivity of the composites increases by increasing dopent concentration. It was also observed that the current voltage characteristics of the composite were found to be ohmic in nature, wherein drastic drop of the electrical conduction was observed at an accurate temperature of 405 K. Electrical behavior of the composites as function of filler concentration and versus temperature were explained respectively by percolation theory and positive temperature coefficient effect.  相似文献   
7.
Lenci  Stefano 《Meccanica》2004,39(5):415-439
The elastic and damage longitudinal shear behavior of highly concentrated long fiber composites is analyzed by means of a simplified model where it is supposed that the fibers are rigid and touch each other in a regular hexagonal array. In the microscopic unit cell the problem is reduced to six similar problems of antiplane deformation on an equilateral circular triangle (see forthcoming Figure 2). These problems are solved in closed form by the complex variable method, and the solution is used to determine the longitudinal shear moduli, and to study their dependence on the microscopic damage caused by the circumferential debonding at the fiber–matrix interface. Subsequently, the damage evolution is investigated under the hypothesis that the microcracks propagate according to the Griffiths energy criterion. The elastic domain, where there is no damage propagation, is determined and it is shown that it is a polygonal convex set symmetric with respect to the origin. The overall damage evolution is discussed in detail and illustrated with some examples which highlight the very rich nature of the proposed model.  相似文献   
8.
A series solution to obtain the effective properties of some elastic composites media having periodically located heterogeneities is described. The method uses the classical expansion along Neuman series of the solution of the periodic elasticity problem in Fourier space, based on the Green's tensor, and exact expressions of factors depending on the shape of the inclusions. Some properties of convergence of the solution are presented, more specifically concerning the elasticity tensor of the reference medium, showing that the convergence occurs even for empty fibers. The solution is extended for rigid inclusions. A comparison is made with previous exact solutions for a fiber composite made of cylindrical fibers with circular cross-sections and with previous estimates. Different examples are presented for new situations concerning the study of fiber composites: composites with elliptic cross-sections and multi-phase fibrous composites.  相似文献   
9.
Strain analysis of the MOF and its composites using high-resolution X-ray diffractionmeter (XRD) was carried out and the presence of non-uniform, depth-related strain in the MOF crystals was confirmed. Further analysis showed that the magnitude and distribution of strain in MOF crystals can be tuned with the incorporation of nanoparticles (NPs). Moreover, the spatial controlled structures can also optimize functionalities of the NPs@MOF, which was exemplified by their applications on the catalytic reduction of nitroarenes. It is anticipated that the investigation of MOF structure evolution through controlling the architectures of the MOF/NPs hybrid materials will shed a light on the study of optimizing the mechanical and chemical properties of MOF composites.  相似文献   
10.
This work is concerned with a two-phase material consisting of an elastoplastic matrix reinforced by linearly elastic fibres. It is first shown that uniform strain fields can be generated in this heterogeneous material. A return-mapping based algorithm is then proposed and used to find uniform strain loading paths. With the help of uniform strain fields, exact results, independent of the transverse geometry and arrangement of the fibres, are derived for the effective elastic properties and for the effective initial and current yield surfaces. To cite this article: Q.-C. He, H. Le Quang, C. R. Mecanique 332 (2004).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号