首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 437 毫秒
1.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
2.
3.
4.
Acyclic ketone-derived oxocarbenium ions are involved as intermediates in numerous reactions that provide valuable products, however, they have thus far eluded efforts aimed at asymmetric catalysis. We report that a readily accessible chiral carboxylic acid catalyst exerts control over asymmetric cyclizations of acyclic ketone-derived trisubstituted oxocarbenium ions, thereby providing access to highly enantioenriched dihydropyran products containing a tetrasubstituted stereogenic center. The high acidity of the carboxylic acid catalyst, which exceeds that of the well-known chiral phosphoric acid catalyst TRIP, is largely derived from stabilization of the carboxylate conjugate base through intramolecular anion-binding to a thiourea site.  相似文献   
5.
6.
7.
8.
Herein, we show how the spatial environment in the functional pores of covalent organic frameworks (COFs) can be manipulated in order to exert control in catalysis. The underlying mechanism of this strategy relies on the placement of linear polymers in the pore channels that are anchored with catalytic species, analogous to outer‐sphere residue cooperativity within the active sites of enzymes. This approach benefits from the flexibility and enriched concentration of the functional moieties on the linear polymers, enabling the desired reaction environment in close proximity to the active sites, thereby impacting the reaction outcomes. Specifically, in the representative dehydration of fructose to produce 5‐hydroxymethylfurfural, dramatic activity and selectivity improvements have been achieved for the active center of sulfonic acid groups in COFs after encapsulation of polymeric solvent analogues 1‐methyl‐2‐pyrrolidinone and ionic liquid.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号