首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   25篇
  国内免费   25篇
化学   140篇
晶体学   1篇
  2023年   10篇
  2022年   9篇
  2021年   15篇
  2020年   18篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   18篇
  2015年   8篇
  2014年   5篇
  2013年   11篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  1991年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
1.
This Minireview summarizes the recent progress of stimuli-responsive purely organic phosphorescence materials. Organic phosphorescence is closely related to the intermolecular interactions, because such interactions are beneficial to promote spin orbital coupling (SOC) and boost intersystem cross (ISC) efficiency and finally are conducive to satisfactory phosphorescence. It is found that the intermolecular interactions, which are essential for organic phosphorescence, are easily disturbed by external stimuli such as mechanical force, photon, acid, chemical vapor, leading to the luminescence change. According to this principle, various purely organic phosphorescence materials sensitive to external stimuli have been developed. This Minireview categorizes reported stimuli-responsive purely organic phosphorescence materials on the basis of different stimuli, including mechanochromism, mechanoluminescence, photoactivity, acid-responsiveness and other stimuli. Some prospective strategies for constructing stimuli-responsive purely organic phosphorescence molecules are provided.  相似文献   
2.
Gaining external control over self‐organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self‐assembly is dictated by microphase separation, the hydrophobic effect, and head‐group repulsion. It is desirable to supplement surfactants with an added mode of long‐range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition‐metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure‐directing agents enabled the formation of porous solids with 12‐fold rotational symmetry.  相似文献   
3.
Ion gels are an emerging class of polymer gels in which a three-dimensional polymer network swells with an ionic liquid. Ion gels have drawn considerable attention in various fields such as energy and biotechnology owing to their excellent properties including nonvolatility, nonflammability, high ionic conductivity, and high thermal and electrochemical stability. Since the first report on ion gels (published ∼30 years ago), diverse functional ion gels exhibiting impressive physicochemical properties have been reported. In this review, recent developments in functional ion gels that can modulate their physical properties in response to environmental conditions are outlined. Stimuli-responsive ion gels that can adaptively undergo phase transitions in response to thermal and light stimuli are initially discussed, followed by an evaluation of diverse self-healing ion gels that can spontaneously mend mechanical damage through judiciously designed ion-gel networks.  相似文献   
4.
采用聚乙二醇单甲醚(mPEG)为亲水段,聚赖氨酸(PzLL)为疏水段,通过二硫键和碳氮双键串联桥连合成了两嵌段共聚物(mPEG-CN-SS-PzLL),其中的二硫键具有还原敏感性,碳氮双键具有pH酸敏感性。通过红外光谱和核磁共振谱等手段测试分析了产物的化学结构。将聚合物通过透析法自组装制备得到双刺激响应型纳米载药粒子。结果表明:该纳米载药粒子的药物包封率较高,达到52%。该载药系统在还原环境或酸性环境下具有良好的体外释药性能。  相似文献   
5.
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318  相似文献   
6.
Carriers for intracellular delivery are required to overcome limitations of therapeutic agents such as low specificity, systemic toxicity, high clearance rate, and low therapeutic index. Nanocontainers comprised of an aqueous core and a polymer shell have received increasing attention because they readily combine stimuli response to improve intracellular payload release and surface modification to enhance selectivity towards the desired region of action. This Minireview summarizes the design and properties of polymer nanocontainers for intracellular delivery, classified according to the polymer architecture.  相似文献   
7.
Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational exchanges between two preexisting conformations of 2,2′,4,4′-tetramethoxyl biphen[3]arene (MeBP3) macrocycle. Structures of these two conformations are both observed in solid state, and characterized by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond to solvents, temperatures, guest binding and acid/base addition. The current system may have a role to play in the construction of molecular switches and other stimuli-responsive systems.  相似文献   
8.
New bio-derived strategies have been recently explored in the design of polymer nanocomposites, particularly in the area of responsive materials, which offer pathways toward tailored interfacial adhesion, responsive interactions and controlled dispersion. In this Feature article, we discuss: (1) precise control of dispersion via self-assembly driven approaches in responsive mechanics, (2) inherent and strong interfacial adhesion in single polymer composites, and (3) percolating, electrospun nanofiber networks as filler elements in adaptable composites. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   
9.
Stimuli-responsive polymers are capable of translating changes in their local environment to changes in their chemical and/or physical properties. This ability allows stimuli-responsive polymers to be used for a wide range of applications. In this review, we highlight the analytical applications of stimuli-responsive polymers that have been published over the past few years with a focus on their applications in sensing/biosensing and separations. From this review, we hope to make clear that while the history of using stimuli-responsive polymers for analytical applications is rich, there are still a number of directions to explore and exciting advancements to be made in this flourishing field of research.  相似文献   
10.
Transient state swelling behavior and swelling kinetics of novel stimuli-responsive polyglycerol hydrogels were studied at 293, 310 and 333 K. Depending on temperature, Fickian or anomalous diffusion behavior was observed. Mechanical properties of the hydrogels in the swollen and dry states were investigated and the average molecular weight between crosslinks was calculated. To assess the potential for biodegradation of hydrogels, initial swelling behavior in phosphate buffered saline (PBS) solution and mass loss profiles as a function of degradation time were investigated over a period of 30 days. All swelling behavior, mechanical properties and degradations were clearly affected by the degree of cross-linking. The hydrophilicity and biodegradability of polyglycerol hydrogels make them suitable for pharmaceutical, biomedical and biotechnological applications. They could potentially serve as a substitute for common fossil-based hydrogels such as poly(ethylene glycol) and poly(vinyl alcohol) hydrogels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号