首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   77篇
  国内免费   24篇
化学   186篇
晶体学   28篇
力学   26篇
数学   25篇
物理学   332篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   3篇
  2020年   10篇
  2019年   10篇
  2018年   9篇
  2017年   16篇
  2016年   17篇
  2015年   12篇
  2014年   18篇
  2013年   45篇
  2012年   17篇
  2011年   20篇
  2010年   19篇
  2009年   33篇
  2008年   32篇
  2007年   44篇
  2006年   40篇
  2005年   19篇
  2004年   22篇
  2003年   45篇
  2002年   13篇
  2001年   33篇
  2000年   24篇
  1999年   12篇
  1998年   11篇
  1997年   15篇
  1996年   9篇
  1995年   10篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有597条查询结果,搜索用时 140 毫秒
1.
ABSTRACT

The authors present the results of an investigation in Fe–Ni-Cr austenitic alloys of the low-temperature deformation-induced segregations of nickel that form in the micro regions being (i) located close to grain- and subgrain boundaries and (ii) characteristic of the concentration and magnetic inhomogeneities indicated by the appearance of a dark diffraction contrast at the electron diffraction patterns taken from these regions typical (at the same time) of an enhanced value of Curie temperature. The observed effects were connected with the micro distortions caused by the local change of lattice parameter because of an increase in nickel concentration, as well as in the result of a magnetostriction dilatation. Using methods of the X-ray energy dispersive spectroscopy (XEDS) and atomic-probe body-section radiography (tomography – APT) has made it possible to determine the borders of those regions of austenite that were characteristic of an enhanced concentration of nickel in the fields of the localisation of a deformation-induced segregation of nickel in the vicinity of grain (subgrain) boundaries of austenitic alloys of the types Fe–13Cr–30Ni and Fe–37Ni–3Ti.  相似文献   
2.
We analyze the effect of co-segregation on the mobility of grain boundaries within the framework of the impurity drag theory originally proposed by Cahn and Lücke and Stüwe for an ideal solution. The new derivation extends this model to the case where there are two types of impurities (or three components in the alloy). Since the resultant expression for the boundary mobility is complicated, numerical solutions were obtained for several cases to show how co-segregation affects the boundary mobility. Depending on the relative diffusivities of the two impurities which are both attracted to the boundary, the mobility may either increase or decrease with increasing concentration of one of the impurities. When one of the impurities is attracted to the boundary and the other repelled from the boundary, increasing the concentration of the attractive impurity can lead to a sharp decrease in the boundary mobility.  相似文献   
3.
Bulk carbon impurities segregate at the Fe(1 0 0) surface and, upon thermal annealing, can form metastable surface phases with local and long range order and peculiar electronic properties. We present a surface science study of C-segregated Fe(1 0 0) with scanning tunneling microscopy, angle resolved photoemission, and ab initio calculations of the surface structure and electron states. In particular the c(3√2 × √2) structure, observed for 0.67 atomic layers of C segregated at the iron surface, is found to be due to self-organized carbon stripes made of zig-zag chains. The strong hybridization between C and Fe was observed in ARPES spectra.  相似文献   
4.
We employ an agent‐based model to show that memory and the absence of an a priori best strategy are sufficient for self‐segregation and clustering to emerge in a complex adaptive system with discrete agents that do not compete over a limited resource nor contend in a winner‐take‐all scenario. An agent starts from a corner of a two‐dimensional lattice and aims to reach a randomly selected site in the opposite side within the shortest possible time. The agent is isolated during the course of its journey and does not interact with other agents. Time‐bound obstacles appear at random lattice locations and the agent must decide whether to challenge or evade any obstacle blocking its path. The agent is capable of adapting a strategy in dealing with an obstacle. We analyze the dependence of strategy‐retention time with strategy for both memory‐based and memory‐less agents. We derive the equality spectrum to establish the environmental conditions that favor the existence of an a priori best strategy. We found that memory‐less agents do not polarize into two opposite strategy‐retention time distributions nor cluster toward a center distribution. © 2004 Wiley Periodicals, Inc. Complexity 9: 41–46, 2004  相似文献   
5.
Summary We report on neutron emission in palladium and titanium electrolitically charged with deuterium. The detection of neutrons is observed after thermal treatment of the electrode. In the hypothesis that neutrons came from cold fusion processes, we estimate a fusion rate as high as 1.3·10−21 fusions/deuteron pair/second.  相似文献   
6.
In order to determine the energetic driving forces for surface segregation in bimetallic clusters, we use a combined approach coupling numerical simulations within an N-body interatomic potential and a lattice-gas model. This approach, which has been used successfully to study both the superficial segregation in semi-infinite alloys and the intergranular segregation, allows us to determine the relative contributions of the three elementary driving forces for the different sites of the cluster surface (vertices, edges and facets) in both dilute limits for the Cu-Ag system. We show that the segregation hierarchy based on broken-bond arguments (preferential segregation to the vertex sites, less to edge sites, and least to facet sites) is not at all universal. In particular, unusual hierarchies are predicted when the sizes of the constituents are strongly different. Furthermore, we compare the segregation driving forces for cubo-octahedral and icosahedral clusters. They are similar for the vertex sites and edge sites, whereas they differ significantly for the sites of the triangular facets. The segregation of the species with the largest atomic radius (Ag) is indeed largely enhanced in the icosahedral structure due to dilations of the orthoradial distances.  相似文献   
7.
Utilizing forward recoil spectrometry (FRES), we have determined the segregation isotherm which describes the interfacial excess zi* of diblock copolymers of poly (d8-styrene-b-2-vinylpyridine) (dPS-PVP) at the interface between the homopolymers PS and PVP as a function of ?, the volume fraction of diblock copolymer remaining in the host homopolymer. All the samples were analyzed after annealing at temperatures and times sufficient to achieve equilibrium segregation. The effect of the degree of polymerization of both the diblock copolymers and the host homopolymers on the segregation isotherm is investigated. When the degree of polymerization of the homopolymer is much larger than that of the diblock copolymer, the normalized interfacial excess (zi*/Rg), where Rg is the radius of gyration of an isolated block copolymer chain, is a universal function of that portion of the block copolymer chemical potential due to chain stretching. The existence of such a universal function is predicted by theory and its form is in good agreement with self-consistent mean field calculations. Using these results, one can predict important aspects of the block copolymer segregation (e.g., the saturation interfacial excess) without recourse to the time-consuming numerical calculations. © 1994 John Wiley & Sons, Inc.  相似文献   
8.
The property of the material is closely related to its chemical compositions and microstruc-tures, which are the important parameters in the judgement of the quality of the material. The conventional chemical composition content of the material is an average value of the chemical composition of the whole material tested or the content of a fix position. Although it is still neces-sary to further improve these conventional methods, there are mature and systematic methods for analyzing the conve…  相似文献   
9.
The behavior of zirconium atoms at the W(100) surface associated with oxygen adsorption at different sample temperatures has been studied by Auger electron spectroscopy (AES), ion scattering spectroscopy (ISS), and the relative change of the work function (Δф) measured by the onset of the secondary electron energy distribution. The results have revealed: (i) adsorption of zirconium onto the W(100) surface followed by the elevation of the sample temperature up to 1710 K in an oxygen partial pressure of 2.7 × 10−4 induces complete diffusion of zirconium atoms into the W(100) substrate; (ii) further exposure of oxygen induces co-existence of oxygen and tungsten on the surface at 1710 K, resulting in a work function of 4.37 eV; (iii) keeping the sample temperature at 1710 K, simple evacuation of the system has resulted in surface segregation of zirconium atoms to the surface to form a zirconium atomic layer on the top-most surface, reducing the work function to 2.7 eV. The results have revealed that this specific behavior of zirconium atoms at high temperature assures, with very good reproducibility, the highly stable performance and long service life of Zr---O/W(100)-emitters in practical use, even in a low vacuum of 10−6 Pa.  相似文献   
10.
Ge segregation during the growth of Si1 − xGex alloys (x = 5, 10, 20, and 40%) was studied using X-ray photoelectron spectroscopy. The alloys were grown in thicknesses up to 20.0 nm at 500°C to measure quantitatively the amount of segregated surface Ge. The length of alloy needed to reach steady-state growth edge was found to decrease with increasing alloy concentration (4.8, 2.8, 2.4, and 2.0 nm, respectively). It was found that each alloy had a complete monolayer of Ge on the surface and an increasing amount of segregated Ge in the second layer (20, 55, 80, and 95%, respectively) during steady-state growth. An increase in the temperature of alloy growth (400–750°C) resulted in an increase in the leading edge of alloy growth but did not change the amount of segregated Ge during steady-state growth. We propose that film stress is responsible for the amount of Ge segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号