首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
  国内免费   8篇
化学   50篇
晶体学   4篇
物理学   5篇
  2023年   2篇
  2021年   1篇
  2020年   5篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1993年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
In this study, nanocrystalline cellulose (NCC) prepared from microcrystalline cellulose using high‐intensity ultrasonication as mechanical method without any chemical treatment. The obtained NCC with around 30–50 nm diameters, utilized as support, reducing and stabilizing agent for in‐situ green and eco‐friendly synthesis of silver nanoparticles (Ag NPs). The catalytic activity of composite was examined for degradation of environmental pollutants. The structure of as‐synthesized composite (Ag@NCC) was characterized by ultraviolet–visible spectroscopy (UV–vis), field emission scanning electron microscopy (FE‐SEM); Transmission electron microscopy (TEM); Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the catalytic reaction experiments showed that spherically shaped silver nanoparticles of around 20 nm distributed on the surface of nanocellulose demonstrated high catalytic efficiency towards the removal of methyl orange (MO) and 4‐nitrophenol (4‐NP).  相似文献   
2.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
3.
Direct attachment of gold nanoparticles to a green support without the use of an external reducing agent and using it for removing toxic pollutants from wastewater, i. e., reduction of nitroarene to amine, are described. A novel approach involving the reduction of gold by the jute plant (Corchorus genus) stem-based (JPS) support itself to form nanoparticles (AuNPs) to be used as a catalytic system (‘dip-catalyst’) and its catalytic activity for the hydrogenation of series of nitroarenes in aqueous media are presented. AuNPs/JPS catalyst was characterized using SEM, UV-Vis, FTIR, TEM, XPS, and ICP-OES. Confined area elemental mapping exhibits uniform and homogeneous distribution of AuNPs on the support surface. TEM shows multi-faceted AuNPs in the range of 20–30 nm. The reactivity of AuNPs/JPS for the transfer hydrogenation of nitroarene as well as hydrogenation of quinoline under molecular H2 pressure was evaluated. Sodium borohydride, when used as the hydrogen source, demonstrates a high catalytic efficiency in the transfer hydrogenation reduction of 4-nitrophenol (4-NP). Quinoline is quantitatively and chemoselectively hydrogenated to 1,2,3,4-tetrahydroquinoline (py-THQ) using molecular hydrogen. Reusability studies show that AuNPs are stable on the support surface and their selectivity is not affected.  相似文献   
4.
Agx Pt100−x (x  = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as‐prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO‐Agx Pt100−x catalysts were applied in the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites exhibited excellent catalytic performance in the reduction of 4‐NP with high recyclability for five consecutive runs. The Fe3O4@GO‐Ag75Pt25 nanocomposite exhibited the best catalytic activity with a rate constant as high as 140.6 × 10−3 s−1. The obtained kinetic data were modelled with the Langmuir–Hinshelwood equation. The energy of activation and thermodynamic parameters including enthalpy, entropy of activation and activation Gibbs free energy were calculated.  相似文献   
5.
A novel synthesized Ag/C fibrous catalyst based on in situ thermally induced redox reaction of PVA/AgNO3 composite fibers was proposed. Utilizing the plasticization and complexation of AgNO3 solution, the melt spinning of PVA/AgNO3 composites was accomplished. Through the in situ thermally induced redox reaction on PVA/AgNO3 composite fibers combined with carbonization of PVA and reduction of Ag+, the synthesized Ag/C fibrous catalyst was prepared with nanosilver particles with average diameter of 130 nm immobilized on the loose microstructural carbon layers. The synthesized Ag/C fibrous catalyst exhibited excellent catalytic activity and reused for at least five cycles for the reduction of 4‐nitrophenol, which may hold great promise in effective and eco‐friendly waste water treatment.  相似文献   
6.
以对硝基苯酚(4-NP)为对象,采用非印迹聚合物(NIP)库筛选法选出乙烯基咪唑为最佳功能单体,通过实验选出乙腈为最合适的聚合溶剂、三甲氧基丙基三甲基丙烯酸酯(TRIM)为交联剂制备分子印迹聚合物。对固相萃取进行了优化,用pH=2.5的磷酸盐缓冲溶液上样、体积比为45∶55的乙腈和磷酸盐缓冲溶液淋洗、甲醇洗脱条件下,聚合物具有最佳印迹效果。4-NP分子印迹聚合物的表观吸附量达到5.8 mg/g。该印迹聚合物对4-NP及其结构类似物苯酚和对氯苯酚的萃取回收率分别为96.0%、78.8%和77.8%,表明具有较高的选择性,还成功地用于自来水样品中4-NP的固相萃取,回收率达到93.1%。由此可得该方法快速、有效,可用于分子印迹聚合物优化制备。  相似文献   
7.
In this study, nitrophenol isomers were adsorbed on synthetic ammonium Y zeolite and the samples acquired were examined with infrared spectroscopy and scanning electron microscopy. The aim of the work is to investigate whether isomeric effects can be monitored after adsorption process. Theoretical calculations of isomers had been performed and the data acquired show that adsorption occurred via bonding from the sites of zeolite.  相似文献   
8.
Photocatalytic membrane was successfully prepared using an efficiently high surface area TiO2 catalyst, dispersed into polyacrylonitrile matrix. The catalyst was directly synthesized using titanium triisopropanolamine as a precursor. The membranes were characterized using FT‐IR, TGA, SEM and their photocatalytic performance tested, viz. stability, permeate flux and photocatalytic degradation of 4‐NP. We find that polyacrylonitrile is an effective matrix, showing high stability and low permeate flux. The amount of TiO2 loaded in the membrane was varied between 1, 3 and 5 wt% to explore the activity and stability of membranes in the photocatalytic reaction of 4‐NP. As expected, the higher the loading of TiO2 loaded, the higher the resulting catalytic activity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
9.
The enzymatic nitration of phenol and m-cresol catalyzed by horseradish peroxidase was studied in the presence of H2O2 and NaNO2. The results showed that the nitration products of phenol were 2-nitro and 4-nitrophenols. There was also a small amount of by-products of hydroquinone and catechol. The influences of various reaction parameters, including pH, organic solvent type, and concentrations of NaNO2 and H2O2, on the nitration products were investigated. The yields of 4-nitrophenol and 2-nitrophenol were 14% and 12%, respectively. The nitration products of m-cresol were 4-nitro-m-cresol and 6-nitro-m-cresol, and the yields of 4-nitro-m-cresol and 6-nitro-m-cresol were 19% and 30%, respectively.  相似文献   
10.
New N‐doped reduced graphene oxide (N‐RGO) meshes are facile fabricated by selective etching of 3–5 nm nanopores, with controllable doping of N dopants at an ultrahigh N/C ratio up to 15.6 at%, from pristine graphene oxide sheets in one‐pot hydrothermal reaction. The N‐RGO meshes are illustrated to be an efficient metal‐free catalyst toward hydrogenation of 4‐nitrophenol, with new catalytic behaviors emerging in following three aspects: (i) tunable kinetics following pseudofirst order from commonly observed pseudozero order; (ii) strikingly improved activity with 26‐fold increased rate constant (1.0 s−1 g−1 L); (iii) no induction time required prior to reaction due to depressed back conversion, and dramatically decreased apparent activation energy (Ea) (17 kJ mol−1). The origin of these new catalytic properties can be assigned to the synergetic effects between graphitic N doping and structural defects arising from nanopores. Deeper understanding unveils that the concentration of graphitic N is inverse proportion to Ea, while the pyrrolic N has no impact on this reaction, and oxygenate groups hampers it. The porous nature allows the N‐RGO meshes to conduct catalyze reactions in continuous flow fashion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号