首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   5篇
  国内免费   7篇
化学   34篇
物理学   5篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2009年   6篇
  2008年   1篇
  2006年   2篇
排序方式: 共有39条查询结果,搜索用时 375 毫秒
1.
A flexible, highly sensitive sensor of oxygen in non-aqueous solvents is described. It consists of CdSe/ZnS nanoparticles decorated with a considerable number of pyrene units, thus making the formation of the pyrene excimer possible. The emission of the pyrene excimer and that of the nanoparticle are suitably separated from each other and also from the excitation wavelength. This sensor can be applied as a ratiometric oxygen sensor by using the linear response of the pyrene excimer lifetime combined with the linear response of the nanoparticle excited state lifetime. This nanohybrid has been assayed in seven media with different dielectric constants and viscosities over the whole oxygen concentration range. In addition, the sensor versatility provides an easy way for monitoring oxygen diffusion through systems.  相似文献   
2.
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well‐ordered layered inorganic–organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well‐ordered and layered nanostructure, alternating organic–inorganic phases, macromolecular template, and mild processing conditions.

  相似文献   

3.
在乙醇-水混合体系中,以氨水为沉淀剂共沉淀合成了甲氨蝶呤/层状双金属氢氧化物(MTX/LDH)纳米复合物,采用控制水热处理时间的方式来调控其性能。利用X-射线衍射(XRD)、透射电镜(TEM)和红外光谱(FT-IR)等表征手段,对其结构及形貌进行了表征。研究表明:MTX分子以单层倾斜或垂直方式插入LDH层间,随着水热处理时间的不同,MTX在层间的倾斜角度发生了变化;水热处理时间对产物的结晶度、粒径和层间排列方式都有影响,当水热处理时间为12h时,得到的MTX/LDH纳米复合物的结晶度最高,单分散性最好。在磷酸缓冲液中考察了MTX/LDH纳米复合物的缓释性能,结果表明样品均呈现出良好的缓释性能,释放速率先快后慢。重点考察了这几种MTX/LDH纳米复合物作用于肺癌细胞A549的细胞生物实验,研究表明这几种复合物对肺癌细胞A549都具有良好的抑制作用,其效果与纳米复合物的单分散性和粒径有密切的关系,单分散性越好,粒径分布越均匀,对A549癌细胞的抑制效果越好。  相似文献   
4.
采用水热法,在乙二胺和EDTA-2Na作用下,成功制备了CdS@g-C3N4复合核壳纳米微粒,并探讨了其生长机理。结果显示:CdS@g-C3N4复合核壳纳米微粒的比表面积是纯CdS纳米颗粒的14.0倍,具有良好的光催化活性和光稳定性。当反应条件为180℃、4 h、CdS/g-C3N4质量比1.9∶1时,CdS@g-C3N4的可见光催化性能最好,300 W氙灯光照2 h,RhB的降解率达95.2%,明显高于纯CdS。重复使用3次后,CdS@g-C3N4形貌、结构及光催化性能无明显变化。  相似文献   
5.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   
6.
Exploration of low‐cost and earth‐abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition‐metal dichalcogenides (TMDs) showed outstanding performance as co‐catalysts for the hydrogen evolution reaction (HER), designing TMD‐hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one‐pot wet‐chemical method is developed to prepare MS2–CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single‐layer MS2 nanosheets with lateral size of 4–10 nm selectively grow on the Cd‐rich (0001) surface of wurtzite CdS nanocrystals. These MS2–CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2–CdS and MoS2–CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2–CdS nanohybrids showed enhanced stability after a long‐time test (16 h), and 70 % of catalytic activity still remained.  相似文献   
7.
We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO2 nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M2+/M3+ atomic ratio of 3) and varied amount of MnCl2.4H2O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO2 nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO2 nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H2O2 as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO2 and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM−1. This outstanding performance enables it to be used for real-time tracking of H2O2 secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices.  相似文献   
8.
The structural and morphological features influencing the glass transition temperature of epoxy/silica nanohybrid and nanocomposite materials containing 25–30 phr of nanoscale silica phases are discussed in this letter to answer the questions related to the processing–structure–property relationships. X-ray photoelectron spectroscopy and atomic force microscopy are used to study the surface chemical structure and morphology of epoxy/silica nanohybrids and nanocomposites. Nanohybrids are synthesized via in situ sol-gel process, while the respective nanocomposites are prepared by mechanical blending of preformed silica nanoparticles into epoxy resin. Differential scanning calorimetry is used to determine glass transition temperature of different materials. The surface analytical characterizations reveal that in situ sol-gel process is more suitable for producing organic–inorganic hybrid materials with superior glass transition temperature owing to the achievement of stronger interfacial compatibility and greater crosslink density. A number of other factors affecting glass transition temperature are explored and discussed with reference to surface chemistry, microstructure, and morphology of epoxy/silica nanohybrids and nanocomposites, respectively.  相似文献   
9.
符秀丽  彭志坚  唐为华  郭熹 《中国物理 B》2009,18(10):4460-4464
We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. The growth of the hybrids is attributed to the decomposition of CdS at high temperature and the strain relieving that arises mainly from the lattice mismatch between Cd and CdS. Temperature dependence of zero-field resistance of single nanohybrid indicates that the as-produced Cd/CdS nanohybrid undergoes a metal--semiconductor transition as a natural consequence of hybrid from metallic Cd and semiconducting CdS. The metal/semiconductor hybrid property provides a promising basis for the development of novel nanoelectronic devices.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号