首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
This focus article presents the author’s view on the problems in the development of biorefining strategies based on the use of 5-(hydroxymethyl)furfural (HMF), the key product derived from renewable plant biomass that was recognized as the ‘sleeping giant’ of the sustainable chemistry. The several key problems that hinder the large-scale production of HMF and its applicability in the laboratory organic synthesis and industry are discussed. This minireview is also focused on the development of the dynamic cross-linked polymers with controlled three-dimensional structure based on Diels–Alder reaction of biobased HMF-derived furans with maleimides. Realization of scalable technologies for an efficient production of such ‘smart’ analogues of the traditional petrochemical-based materials could be the basis for the realization of the competitive HMF-promoted biorefining.  相似文献   
2.
3.
4.
5.
A model system is introduced as a general tool to elaborate on orthogonal templation of dynamic covalent ring-opening polymerization (ODC-TROP). The tool consists of 310 helical peptides as unprecedented templates and semicarbazones as orthogonal dynamic covalent linkers. With difficult-to-control 1,2-dithiolanes, ODC-TROP on the level of short model oligomers occurs with high templation efficiency, increasing and diminishing upon helix stabilization and denaturation, respectively. Further, an anti-templated conjugate with mispositioned monomers gave reduced templation upon helix twisting. Even with the “unpolymerizable” 1,2-diselenolanes, initial studies already afford mild templation efficiency. These proof-of-principle results promise that the here introduced tool, recyclable and enabling late-stage side chain modification, will be useful to realize ODC-TROP of intractable or unknown cyclic dynamic covalent monomers for dynamer materials as well as cellular uptake and signaling applications.  相似文献   
6.
Dynameric solid films may be generated via the adequate imine-bond connection between bis(pyridine-2,6-diimine) core centres, coordinated with different metal cations and diaminoPEG connectors. The adequate selection of metal cations leads to cross-linked metallo-dynameric films, allowing the fine modulation of their colour and mechanical property. The coordination of the metal cations and bis(pyridine-2,6-diimine), results in the formation of interlocked structures, leading to the most probably formation of interweaved structures with better mechanical properties than those formed in the absence of the metallic cations. Removal and addition of metal cations from solid films can be achieved via tris(2-aminoethyl)amine (TREN) complexing agent, which strongly binds the metal cations, followed by subsequent insertion of other metallic cations. It allows a ligand-modulated dynamic release of the metal cations from the solid films, together with colour transfer and change of mechanical strength at the interfaces between various solid films.  相似文献   
7.
The fabrication of biocompatible adaptive materials with high stiffness and self-healing properties for medical applications is a challenging endeavor. Collagen is a major extracellular matrix component acting as a substrate for cell adhesion and migration. Dynamers are constitutional polymers whose monomeric components are linked through reversible bonds, able to modify their constitution through reversible exchange of their components. In the current work, we demonstrate that the rational combination of collagen and dynameric networks connected with reversible covalent imine bonds is a very important and previously unreported strategy to provide biocompatible membranes with self-healing ability and excellent mechanical strength. The key challenge in the construction of such membranes is the required adaptive interaction between collagen chains and the dynamic cross-linkers, preventing the formation of defects. For example, by varying structure and molecular lengths of the dynamers, the tensile strength of the dynameric membranes reach over 80 MPa, more than 400 % higher than that observed for the reference collagen membrane, and the highest value for break strain found, was 19 %. The self-healing properties were observed when reconnecting two membrane pieces or even from crushed status of the membranes. Moreover, both MTT assay and confocal laser scanning microscopy method demonstrated the good biocompatibility of the collagen membranes, leaving more than 90 % viability for NIH 3T3 cells after 24 h co-culture.  相似文献   
8.
Dynamic cationic polymers were generated in aqueous media from functionally complementary monomers bearing nucleobase groups. (1)H NMR spectroscopy was used to follow the polycondensation reaction of the nucleobase-appended dihydrazides 1 and 2 with the dialdehydes B and C. The reversibility of these polymers was established by proton NMR spectroscopy through exchange of the dihydrazide 2 with polymer 1 B. The polymers 1 B, 2 B, 1 C, and 2 C represent dynamic biopolymers of nucleic acid type, DyNAs. Electrostatic interaction of these polymers with polyanionic entities, such as polyphosphates, polynucleotides, and polyaspartic acid, was shown to take place. It induces a change in size of the dynamic polymer, as it responds by an increase in degree of polymerization to an increase of the overall anionic charge introduced, that is, to the total electrostatic interaction.  相似文献   
9.
The nitroaldol reaction is demonstrated as an efficient dynamic covalent reaction in phosphate buffers at neutral pH. Rapid equilibration was recorded with pyridine‐based aldehydes, and dynamic oligomerization could be achieved, leading to nitroaldol dynamers of up to 17 repeating units. The dynamers were applied in a coherent stimuli‐responsive molecular system in which larger dynamers transiently existed out‐of‐equilibrium in a neutral aqueous system rich in formaldehyde, controlled by nitromethane.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号