首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
  国内免费   9篇
化学   30篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2012年   1篇
  2009年   1篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Jatropa curcas Linn. (JcL) capsule husk was not recommended as biogas feedstocks. However for biorefinery purpose, several technologies have been conducting to solve this problem. This research reported quantity and quality comparison of Dry Husk Jcl (DH-JcL) in one phase system of batch digester compare with semi continuous digester. HDPE drum of 80 L working volume used as digester with 40 days hydraulic retention time. Feeding of DH-Jcl and solvent water was mixed on concentration of 1: 8. Research conclusion showed that semi continuous digester was better than batch digester. Biogas quality showed that methane content can reach 66.61% to 83.15% and biogas quantity in semi continuous digester can reach 0.016 m3 · kg–1 DH JcL. The result was not in optimize condition yet because ratio number of volatile fatty acids/ alkalinity showed 0.5, it was indicated unstable anaerobic degradation process of DH-JcL.  相似文献   
2.
The disposal of food waste is a current and pressing issue, urging novel solutions to implement sustainable waste management practices. Fish leftovers and their processing byproducts represent a significant portion of the original fish, and their disposal has a high environmental and economic impact. The utilization of waste as raw materials for the production of different classes of biofuels and high-value chemicals, a concept known as “biorefinery”, is gaining interest in a vision of circular economy and zero waste policies. In this context, an interesting route of valorization is the extraction of omega-3 fatty acids (ω-3 FAs) for nutraceutical application. These fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have received attention over the last decades due to their beneficial effects on human health. Their sustainable production is a key process for matching the increased market demand while reducing the pressure on marine ecosystems and lowering the impact of waste production. The high resale value of the products makes this waste a powerful tool that simultaneously protects the environment and benefits the global economy. This review aims to provide a complete overview of the sustainable exploitation of fish waste to recover ω-3 FAs for food supplement applications, covering composition, storage, and processing of the raw material.  相似文献   
3.
纤维素乙醇产业化   总被引:38,自引:0,他引:38  
曲音波 《化学进展》2007,19(7):1098-1108
由于能发挥缓解能源紧张、减少环境污染、促进农村发展等重要作用,利用年产量巨大的植物纤维资源,生产可再生性液体替代燃料乙醇的技术受到了巨大的关注,成为工业生物技术的研究热点.酶法生产纤维素乙醇面临多种困难:纤维素原料比重轻,收集运输不便;原料结构复杂,需要深度预处理;纤维素酶系的酶解效率有待提高;半纤维素中的木糖难以发酵转化为乙醇等.经过多年研究,新技术已经取得重大进展,开始接近实用化.紧迫的社会需求正在迫使国内外政府和企业界大量投资,开展纤维素乙醇的中试研究和试生产,力求在短时期内克服上述难点,尽快实现产业化.充分利用植物纤维资源中的多种组分,联合生产乙醇和部分高值产品的生物精练技术,是实现纤维素乙醇产业化的重要突破口和必然途径.玉米芯生物精练生产乙醇和木糖相关产品的技术正在进行产业化.本文综述了纤维素乙醇产业化的研究进展并做了展望.  相似文献   
4.
Processes that produce only ethanol from lignocellulosics display poor economics. This is generally overcome by constructing large facilities having satisfactory economies of scale, thus making financing onerous and hindering the development of suitable technologies. Lignol Innovations has developed a biorefining technology that employs an ethanol-based organosolv step to separate lignin, hemicellulose components, and extractives from the cellulosic fraction of woody biomass. The resultant cellulosic fraction is highly susceptible to enzymatic hydrolysis, generating very high yields of glucose (>90% in 12–24h) with typical enzyme loadings of 10–20 FPU (filter paper units)/g. This glucose is readily converted to ethanol, or possibly other sugar platform chemicals, either by sequential or simultaneous saccharification and fermentation. The liquor from the organosolv step is processed by well-established unit operations to recover lignin, furfural, xylose, acetic acid, and a lipophylic extractives fraction. The process ethanol is recovered and recycled back to the process. The resulting recycled process water is of a very high quality, low BOD5, and suitable for overall system process closure. Significant benefits can be attained in greenhouse gas (GHG) emission reductions, as per the Kyoto Protocol. Revenues from the multiple products, particularly the lignin, ethanol and xylose fractions, ensure excellent economics for the process even in plants as small as 100 mtpd (metric tonnes per day) dry woody biomass input—a scale suitable for processing wood residues produced by a single large sawmill.  相似文献   
5.
Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.  相似文献   
6.
Eight polyhydroxy triterpenoid acids, hederagenin, (4α)-23-hydroxybetulinic acid, maslinic acid, corosolic acid, arjunolic acid, asiatic acid, caulophyllogenin, and madecassic acid, with 2, 3, and 4 hydroxyl substituents, were identified and quantified in the dichloromethane extract of Eucalyptus globulus wood by comparing their GC-retention time and mass spectra with standards. Two other triterpenoid acids were tentatively identified by analyzing their mass spectra, as (2α)-2-hydroxybetulinic acid and (2α,4α)-2,23-dihydroxybetulinic acid, with 2 and 3 hydroxyl substituents. Two MS detectors were used, a quadrupole ion trap (QIT) and a quadrupole mass filter (QMF). The EI fragmentation pattern of the trimethylsilylated polyhydroxy structures of these triterpenoid acids is characterized by the sequential loss of the trimethylsilylated hydroxyl groups, most of them by the retro-Diels-Alder (rDA) opening of the C ring with a π-bond at C12-C13. The rDA C-ring opening produces ions at m/z 320 (or 318) and m/z 278 (or 277, 276, 366). Sequential losses of the hydroxyl groups produce ions with m/z from [M - 90] to [M - 90*y], where y is the number of hydroxyl substituents present (from 2 to 4). Moreover, specific cleavage in ring E was observed, passing from m/z 203 to m/z 133 and conducting other major fragments such as m/z 189.  相似文献   
7.
In the forest biorefinery, hydrolysis lignin (HL) is often dissolved with high concentration NaOH solution, followed by acid precipitation to obtain purified HL. For the first time, this study evaluates the effect of ultrasound (US) on the dissolution of industrially produced HL in aqueous NaOH solutions and the acid precipitation yield of HL. The solubility of HL in mild aqueous NaOH solutions was studied with and without US treatment at 20 kHz concerning the solid-to-liquid ratio, molecular weight of dissolved fractions and structural changes in dissolved HL. Results showed that the solubility of HL at 25 °C was strongly dependent on NaOH concentration. However, the US treatment significantly improved the solubility of HL, reaching a solubility plateau at 0.1 NaOH/HL ratio. US treatment enhanced the solubilization of HL molecules with higher MW compared to conventional mixing. The increase of HL solubility was up to 30 % and the recovery yield of purified lignin with acid precipitation was 37 % higher in dilute NaOH solution. A significant result was that the Mw of dissolved HL in homogeneous alkali solutions decreased with US treatment. SEC, HSQC and 31P NMR analyses of dissolved HL characteristics showed that both, the mechanoacoustic and sonochemical solubilization pathways contribute to the dissolution process. However, US does not cause major changes in the HL structure compared to the native lignin. Indeed, US technology has the potential to advance the dissolution and purification of HL in biorefineries by reducing the amount of chemicals required; thus, more controlled and environmentally friendly conditions can be used in HL valorization.  相似文献   
8.
Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio‐ and electrocatalysis to convert glucose into bio‐based unsaturated nylon‐6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L?1 in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3‐hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio‐based unsaturated nylon‐6,6 (unsaturated polyamide‐6,6) was finally obtained by polymerization of 3‐hexenedioic acid with hexamethylenediamine.  相似文献   
9.
对化石资源的过渡开采导致了严重的能源危机及环境问题,发展生物基聚合物代替石油基聚合物是缓解当前危机的有效途径之一.本文总结了国内外研究人员在生物基聚合物研究领域的最新进展,重点介绍了生物基脂肪族单体、芳香族单体的制备,包括生物基羧酸单体、生物基二醇单体、生物基烃类单体、呋喃基单体、香草醛单体,比较了不同制备方法的选择性及产率;采用传统及新型的聚合方法,如熔融缩聚、自由基聚合、酶催化聚合等,可以将生物基单体转化为各种生物基聚合,包括聚酯、聚酰胺、聚碳酸酯等,并比较了聚合条件对生物基聚合物制备的影响.生物基聚合物具有优良的机械性能及热性能,并展现出各种优异特性,如形状记忆、自修复功能等,有望代替传统的石油基聚合物.最后,对国内外生物基质聚合物的前景做了展望.  相似文献   
10.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择。本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等。本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号