首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   46篇
  国内免费   35篇
化学   716篇
晶体学   5篇
力学   5篇
数学   1篇
物理学   31篇
  2024年   2篇
  2023年   9篇
  2022年   10篇
  2021年   26篇
  2020年   14篇
  2019年   26篇
  2018年   12篇
  2017年   20篇
  2016年   37篇
  2015年   37篇
  2014年   42篇
  2013年   53篇
  2012年   62篇
  2011年   52篇
  2010年   48篇
  2009年   46篇
  2008年   49篇
  2007年   48篇
  2006年   37篇
  2005年   35篇
  2004年   29篇
  2003年   19篇
  2002年   19篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1988年   1篇
排序方式: 共有758条查询结果,搜索用时 0 毫秒
1.
We prepared biodegradable poly(ethylene oxide) (PEO)/poly(L ‐lactic acid) (PLLA) graded blends by the dissolution–diffusion process, and discussed the biodegradability and tensile strength of the graded blends by comparing isotropic blend and PLLA only. All the graded blends were degraded more largely than the PLLA only and isotropic blend (PEO: 37.5 wt %), which had the same content as the total content of those graded blends. The graded blend having most excellent wide compositional gradient was degraded most largely with the enzyme. Thus, graded structure of the blends promoted their biodegradabilities large. It was considered that the dissolution of PEO with water increased the surface area attacked by the enzyme, while PEO caught PLLA oligomers to promote the biodegradation of PLLA. Then, the biodegradabilities of the graded blends were suppressed by the increasing crystallinity of PLLA. Furthermore, the strengths of all the graded blends were larger than those of the isotropic blend. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2972–2981, 2007  相似文献   
2.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   
3.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
4.
Nanocomposites (NC) were formed using cationic poly(L ‐lysine) (PLL), a semicrystalline polypeptide, that was reinforced by sodium montmorillonite (MMT) clay via solution intercalation technique. By varying solution conditions such as pH, temperature, and polypeptide concentration in the presence of clay platelets, the secondary structure of PLL was controllably altered into α‐helical, β‐sheet, and random coil. The high molecular weight polypeptide shows a strong propensity to fold into the β‐sheet structure when cast as films, irrespective of the initial secondary structure in solution. Nanocomposite local morphology confirms intercalated MMT platelets with PLL over a wide range of compositions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 239–252, 2007.  相似文献   
5.
N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium (DMMCA) was graft-copolymerized onto the surface of segmented poly(ether urethane) (SPEU) and PE film. The carboxybetaine structure on SPEU and PE film surfaces was confirmed by ATR-FTIR, XPS and water contact angle measurements. Through the experiments with platelet adhesion and protein adhesion assay in vitro, the two materials studied, including poly-DMMCA gel, all show excellent nonthrombogenicity. This confirms once again that the zwitterionic molecular structure on the surfaces of materials is essential for improving their nonthrombogenicity and biocompatibility.  相似文献   
6.
Tissue engineering offers the potential of providing vessels that can be used to replace diseased and damaged native blood vessels. The endothelization of a synthetic vascular graft minimizes the failures associated with blood clotting and platelet activation. The aim of this study was to culture vascular-derived endothelial and smooth muscle cells on both untreated and NaOH-treated poly(epsilon-caprolactone) (PCL) films, a biocompatible and bio-resorbable polymer, and to evaluate the behavior of both cell types as a preliminary study for vascular graft development. PCL films were prepared by hot pressing; characterized by DSC, IR, SEM, and scanning force microscopy; and treated with NaOH to increase the surface hydrophilicity before cell culture. Endothelial and smooth muscle cells, isolated from pig cava vein, were characterized by immunofluorescence and confocal microscopy studies of endothelial nitric oxide synthase and alpha-smooth muscle actin. Good adhesion, growth, viability and morphology of both the endothelial and smooth muscle cells on PCL films were obtained, but a light stimulation of mitochondrial activity was observed during short culture times. NaOH treatment improved the adhesion and enhanced the proliferation in both cell types. This verified the possible use of this modified polymer as a support in the preparation of a synthetic vascular graft. [Diagram: see text] SEM micrograph of smooth muscle cells cultured on NaOH-treated PCL film. (Original magnification: 1000x).  相似文献   
7.
复合生物材料的研究进展   总被引:11,自引:0,他引:11  
从力学性能的改善和降解速率的可调度等角度,总结了复合生物材料与单一组分的材料相比,在生物医学领域应用中所表现出的综合使用性能的优越性。综述了复合生物材料,特别是用于骨修复的各类有机/无机复合材料近年来的研究进展状况。提出将与人骨中磷灰石微晶类似的羟基磷灰石纳米粒子与可降解聚酯材料进行复合,能够得到具有优越骨诱导性能并且能够降解的新型骨修复材料。这方面的研究代表了有机/无机复合生物材料领域新的发展方向。  相似文献   
8.
9.
Helical poly(3-methyl-4-vinylpyridine) (P3M4VP)/amino acid complexes have been prepared via acid-base reaction of the achiral polymer with D and L amino acids: alanine, leucine, valine, serine and phenylalanine. The circular dichroism (CD) spectra of P3M4VP/D- and L-alanine complexes in CH(3)OH/H(2)O show opposing (near mirror image) Cotton effect signals at 278.4, 274.8 and 270.8 nm, indicating the formation of enantiomeric secondary structures. The formation of the enantiomeric structures is supported by observed [alpha](D)(25) values of -3.0 and +3.0 for the P3M4VP/D-alanine and P3M4VP/L-alanine complexes, respectively. The preparation of helical P3M4VP/amino acid complexes has been carried out in CH(3)OH and H(2)O at pH 1.8 and 2.7. The intensities of the Cotton effect signals were good. For example, for the P3M4VP/L-alanine complexes in CH(3)OH/H(2)O and H(2)O (pH 1.8), the second Cotton effect signal around 275-277 nm show [theta;] values of 49 980 and 79 210 deg . cm(2) . dmol(-1), respectively. The formation of the helical secondary structure is rapid. The acid-base reaction between P3M4VP and L-alanine in CH(3)OH/H(2)O, in 10 min, show a CD spectrum with Cotton effect signals at 274 and 272 nm with [theta] values of 27,000 deg . cm(2) . dmol(-1) and -36,000 deg . cm(2) . dmol(-1), respectively. P3M4VP permits ready conformational reorientation on complexation with amino acids, but once the helical P3M4VP/amino acid complexes are formed, it is stable at room temperature. P3M4VP is not compatible with HeLa ovarian cancer cells, but the helical P3M4VP/amino acid complexes are compatible with HeLa cells. The complexes minimally interfere with the adhesion and growth of HeLa cells on complex surfaces. Helical poly(3-methyl-4-vinylpyridine)/D- and L-alanine complexes support the attachment and growth of HeLa cells. The micrographs shows HeLa cells after three days: left panel: on P3M4VP/L-alanine complex; right panel: on P3M4VP/D-alanine complex.  相似文献   
10.
This paper reports the creation of hydroxyapatite/polyester nanografts by “graft-from” polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm the grafting on the surface of the hydroxyapatite nanocrystals. Polymers with the highest molecular mass (Mn) between 4250 Da (cyclooctanol) and 6100 Da (hydroxyapatite) were produced. In both cases the molecular mass distributions of the polymers formed were monomodal. The materials obtained were characterized by size-exclusion chromatography, NMR and FT-IR spectroscopy, and thermal methods. Their suitability as additives for commercial bone cement (Simplex P Speedset, Stryker Orthopaedics) has been confirmed by thermal analysis techniques and mechanical testing. The results obtained show that addition of the hydroxyapatite/ polyester nanografts improved both thermal and mechanical properties of the bone cement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号