首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   49篇
  国内免费   22篇
化学   729篇
晶体学   1篇
力学   5篇
综合类   2篇
数学   1篇
物理学   21篇
  2023年   4篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   28篇
  2018年   17篇
  2017年   20篇
  2016年   31篇
  2015年   26篇
  2014年   32篇
  2013年   56篇
  2012年   40篇
  2011年   35篇
  2010年   42篇
  2009年   47篇
  2008年   55篇
  2007年   47篇
  2006年   43篇
  2005年   48篇
  2004年   44篇
  2003年   36篇
  2002年   32篇
  2001年   15篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1984年   1篇
排序方式: 共有759条查询结果,搜索用时 31 毫秒
1.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   
2.
Polymersomes have gained much interest within the biomedical field as drug delivery systems due to their ability to transport and protect cargo from the harsh environment inside the body. For an improved drug efficacy, control over cargo release is however also an important factor to take into account. An often employed method is to incorporate pH sensitive groups in the vesicle membrane, which induce disassembly and content release when the particles have reached a target site in the body with the appropriate pH, such as the acidic microenvironment of tumor tissue or the endosome. In this paper, biodegradable poly(ethylene glycol)-poly(caprolactone-gradient-trimethylene carbonate)-based polymeric vesicles have been developed with disassembly features at mild acidic conditions. Modifying the polymer backbone with imidazole moieties results in vesicle disassembly upon protonation due to the lowered pH. Furthermore, upon increasing the pH efficient re-assembly into vesicles is observed due to the switchable amphiphilic nature of the polymer. When this re-assembly process is conducted in presence of cargo, enhanced encapsulation is achieved. Furthermore, the potency of the polymeric system for future biomedical applications such as adjuvant delivery is demonstrated.  相似文献   
3.
In this study, new biodegradable and biocompatible amphiphilic polymers were obtained by modifying the peripheral hydroxyl groups of branched polyethers and polyesters with organosilicon substituents. The structures of the synthesized polymers were confirmed by NMR and GPC. Organosilicon moieties of the polymers were formed by silatranes and trimethylsilyl blocks and displayed hydrophilic and hydrophobic properties, respectively. The effect of the ratio of hydrophilic to hydrophobic organosilicon structures on the surface activity and biological activity of macromolecules was studied, together with the effect on these activities of the macromolecules’ molecular weight and chemical structure. In particular, the critical micelle concentrations were determined, the effect of the structure of the polymers on their wetting with aqueous solutions on glass and parafilm was described, and the aggregation stability of emulsions was studied. Finally, the effect of the polymer structures on their antifungal activity and seed germination stimulation was examined.  相似文献   
4.
A series of spray dried zeolitic imidazolate frameworks (ZIFs = ZIF‐8, ZIF‐67, and Zn/Co‐ZIF) are used as a catalyst for the bulk ring‐opening polymerization of δ‐valerolactone without any co‐catalyst to generate polyvalerolactone. Interestingly, using the same catalyst under the same reaction conditions could manipulate the structure of the product polymer, and thus its physical properties. Thus, using a dried substrate leads to the formation of the cyclic polymer while a linear polymer was formed on using the commercially available substrate. An activated monomer mechanism has been suggested where the propagating zinc alkoxide undergoes an intramolecular transesterification to release cyclic or linear polyvalerolactone. The ROP of δ‐VL without drying shows that the polymeric zwitterions have little tendency to cyclize in the presence of moisture. At 140 °C, ZIF‐8 shows a superior catalytic activity resulting in the production of cyclic polyvalerolactone having a high molecular weight as compared to ZIF‐67 or Zn/Co‐ZIF due to the presence of highly active sites. The catalyst could be recycled and reused without any significant loss of catalytic activity.  相似文献   
5.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   
6.
Small interfering RNAs (siRNAs) technology has shown great promise as a new class of therapeutics invention for treatment of cancer and other diseases. siRNA has been used extensively in blocking various genes and is presently being evaluated as a therapeutic for cancer and viral disease. Despite the excitement about this remarkable biological process for sequence specific gene regulation, the major limitations against the use of siRNAs‐based therapeutics are their rapid degradation by serum nuclease, poor cellular uptake, and rapid renal clearance following systemic delivery, off‐target effects, and induction of immune responses. Many researchers have tried to overcome these limitations with developing nuclease‐resistant chemically modified siRNAs and variety of synthetic and natural biodegradable lipids and polymers for siRNA delivery to enhance efficacy and safety profiles. An ideal siRNAs‐based delivery system must be clinically suitable, safe, and effective. This review discuss the recent progress of biodegradable polymers in siRNA delivery technology.  相似文献   
7.
Amino acid ester substituted polyphosphazenes are osteoactive benefiting from their phosphorus‐containing chemical structure, which highlights interests in bone tissue engineering. To correlate their chemical structures with cell activities, in this study, poly[(ethyl alanato)0.3(ethyl glycinato)0.7phosphazene] (PAGP) and poly[(ethyl phenylalanato)0.3(ethyl glycinato)0.7phosphazene] (PPGP) are synthesized to carry out studies on cell osteogenic differentiation. In the non‐contact culture manner, bone mesenchymal stromal cells (BMSCs) are cultured in transwell chambers containing PAGP or PPGP films, while the cells and the materials do not contact. In the contact culture manner, BMSCs are cultured on the PAGP or PPGP films. In the meantime, solutions containing PAGP or PPGP degradation products (i.e., phosphate, ammonium, and corresponding amino acids) are applied for cell culture using inorganic phosphate (Pi) ion as control. Thus, the influences from substrate surface and degradation products can be identified separately. The results reveal that both the phosphorus‐containing surface of PAGP and PPGP films and their degradation products play significant roles in regulating cell behaviors. In comparison with PAGP, PPGP seems able to provide relatively stable phosphorus‐containing surface to strengthen the cell‐scaffold interaction because of its slower degradation rate and higher Young's modulus, leading to greater promotion in osteogenic differentiation via contact effect.  相似文献   
8.
Poly([R]‐3‐hydroxybutyrate) (PHB), a natural biodegradable polyester, has attracted much attention as a new biomaterial because of its sustainability and good biocompatibility. In this study, it is discovered that PHB can be conveniently functionalized to obtain a number of platform chain architectures that may provide a wide range of functional copolymers. In a transesterification reaction, linear (di‐hydroxylated) and star shaped (tri‐ and tetra‐hydroxylated) PHB oligomers are synthesized, followed by copolymerization with 2‐(dimethylamino)ethyl methacrylate and quaternization with benzyl bromide to afford antimicrobial properties. The antimicrobial activities of the quaternary salts against clinically relevant pathogens on the interactions with outer and cytoplasmic membranes, lethal mechanisms, multipassage resistance, and synergy effect with antibiotics are investigated. Cationic PHB copolymers show effectiveness as antimicrobial agents, with minimum inhibitory concentration values 0.24–0.65 µm (or µmol dm?3) (or 32–128 µg mL?1) against Gram‐positive and Gram‐negative bacteria. Modifying the copolymer architectures into star shapes results in enhanced effectiveness to disrupt the membrane integrity. Synergistic effects are attained for all the quaternized PHB derivatives when they are used together with tobramycin. Multipassage resistance does not occur in both the linear and star derivatives against Gram‐negative bacteria after 20 passages.  相似文献   
9.
Magnesium‐based implants present several advantages for clinical applications, in particular due to their biocompatibility and degradability. However, degradation products can affect negatively the cell activity. In this work, a combined coating strategy to control the implant degradation and cell regulation processes is evaluated, including plasma electrolytic oxidation (PEO) that produces a 13 µm‐thick Ca, P, and Si containing ceramic coating with surface porosity, and breath figures (BF) approach that produces a porous polymeric poly(ε‐caprolactone) surface. The degradation of PCL‐PEO‐coated Mg hierarchical scaffold can be tailored to promote cell adhesion and proliferation into the porous structure. As a result, cell culture can colonize the inner PEO‐ceramic coating structure where higher amount of bioelements are present. The Mg/PEO/PCL/BF scaffolds exhibit equally good or better premyoblast cell adhesion and proliferation compared with Ti CP control. The biological behavior of this new hierarchical functionalized scaffold can improve the implantation success in bone and cardiovascular clinical applications.  相似文献   
10.
Comprehensive mathematical model based on the kinetics and thermodynamic equations is developed to examine a coesterification concept of biodegradable aliphatic‐aromatic copolyesters, poly(butylene succinate‐co‐butylene terephthalate) (PBST). The simulation results for batch process are validated with pilot experimental data. The continuous process is further studied to figure out the coesterification performance of succinic acid (SA) and terephthalic acid (TPA) with different reaction activities and thermodynamic properties in terms of reaction efficiency, small molecular evaporation and product quality. There is a compromise between the operating conditions of the two systems of SA/1,4‐butanediol (BDO) and TPA/BDO. Proper pressure reduction is beneficial to reaction efficiency and product quality. The way to increase reaction efficiency by raising temperature is limited due to the serious evaporation of reactants. Influenced by the solid–liquid equilibrium and the slow reaction rate of TPA, the esterification of acid needs sufficient residence time to complete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号