首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Hydrogen has been attracting great interest as a major energy source in near future. The lack of an infrastructure has led to a research effort to develop fuel processing technology for production of hydrogen. In this review, we are reporting the catalytic reforming of gaseous hydrocarbons carried out in our research group, covering dry-reforming of CH4, tri-reforming of CH4, the electrocatalytic reforming of CH4 by CO2 in the SOFC (solid oxide fuel cell) system and steam reforming of LPG. Especially, we have focused on our work, though the related work from other researchers is also discussed wherever necessary. It was found that tri-reforming of CH4 over NiO–YSZ–CeO2 catalyst was more desirable than dry-reforming of CH4 due to higher reforming activity and less carbon formation. The synthesis gas produced by tri-reforming of CH4 can be used for the production of dimethyl ether, Fischer–Tropsch synthesis fuels and high valued chemicals. To improve the problem of deactivation of catalyst due to carbon formation in the dry reforming of CH4, the internal reforming of CH4 by CO2 in SOFC system with NiO–YSZ–CeO2 anode catalyst was suggested for cogeneration of a syngas and electricity. It was found that Rh-spc-Ni/MgAl catalyst showed long term stability for 1,100 h in the steam reforming of LPG under the tested conditions. The addition of Rh to spc-Ni/MgAl catalyst restricted the deactivation of catalyst due to carbon formation in the steam reforming of LPG and diesel under the tested conditions. The result suggested that the developed reforming catalysts can be used in the reforming process of CH4, LNG and LPG for application to hydrogen station and fuel processor system.  相似文献   
2.
Ni/Al2O3催化剂上甲烷三重整制合成气   总被引:3,自引:4,他引:3  
姜洪涛  李会泉  张懿 《分子催化》2007,21(2):122-127
制备了负载于大孔容、高比表面的γ-Al2O3载体上的Ni基催化剂.采用固定床流动反应装置,考察了催化剂焙烧温度、反应条件(反应温度、压力、空速以及反应原料气组成)对甲烷三重整反应(TRM)制合成气的催化性能的影响.结果表明,650℃焙烧的催化剂具有较好的稳定性.在常压、850℃、10080h-1、n(CH4)/n(CO2)/n(H2O)/n(O2)=1/0.48/0.54/0.1的条件下,CH4转化率达到95.4%,CO2转化率达到84.6%,在此条件下连续运行9h未见活性下降.TRM反应适宜于在高温、低压下进行,原料组成的变化不会影响CH4转化率,但会影响CO2转化率和产物合成气的n(H2)/n(CO)比.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号