首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   9篇
  国内免费   5篇
化学   51篇
物理学   7篇
  2023年   1篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有58条查询结果,搜索用时 93 毫秒
1.
In this work, the complexes formed between formamide and water were studied by means of the SAPT and AIM methods. Complexation leads to significant alterations in the geometries and electronic structure of formamide. Intermolecular interactions in the complexes are intense, especially in the cases where the solvent interacts with the carbonyl and amide groups simultaneously. In the transition states, the interaction between the water molecule and the lone pair on the amide nitrogen is also important. In all the complexes studied herein, the electrostatic interactions between formamide and water are the main attractive force, and their contribution may be five times as large as the corresponding contribution from dispersion, and twice as large as the contribution from induction. However, an increase in the resonance of planar formamide with the successive addition of water molecules may suggest that the hydrogen bonds taking place between formamide and water have some covalent character.  相似文献   
2.
Equilibrium geometries, interaction energies, and charge transfer for the intermolecular interactions between BrF and HnX (HF, H2O, and NH3) were studied at the MP2/6-311++G(3d,3p) level. The halogen-bonded geometry and hydrogen-bonded geometry are observed in these interactions. The calculated interaction energies show that the halogen-bonded structures are more stable than the corresponding hydrogen-bonded structures. To study the nature of the intermolecular interactions, symmetry-adapted perturbation theory (SAPT) calculations were carried out and the results indicate that the halogen bonding interactions are dominantly inductive energy in nature, while electrostatic energy governs the hydrogen bonding interactions.  相似文献   
3.
By counterpoise‐corrected optimization method, the interactions of BrCl with the first‐row hydrides (HF, H2O, NH3) have been investigated at the MP2/6–311++G(3d,3p) level. To understand that the X? Br‐type (X = F, O, N) structure is more stable than the corresponding hydrogen‐bonded structure in these complexes, the electronic properties were also investigated. Symmetry‐adapted perturbation theory (SAPT) analysis has been carried out to understand the nature of the weak hydrogen bond and X? Br‐type interactions. On the other hand, for the weak hydrogen‐bonded complexes and the X? Br‐type complexes charges transfer is well correlated with the total induction energies. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
4.
In these years there was considerable interest inunderstanding of intermolecular forces in energetic(explosive) systems[1—3]. The supermolecular approach(SM) is widely adopted for calculating ab initio in-termolecular interactions. Nevertheless, it is unable toprovide physically meaningful interaction contribu-tions such as electrostatic, induction, repulsion anddispersion energies. In contrast, the symmetry-adaptedperturbation theory (SAPT)[4—8] has the ability to de-rive these correlated…  相似文献   
5.
HCN(HNC)与NH3, H2O和HF分子间相互作用的理论研究   总被引:1,自引:0,他引:1  
在MP2/aug-cc-pVTZ水平上, 对HCN(HNC)与NH3, H2O和HF分子间可能存在的氢键型复合物进行了全自由度能量梯度优化, 通过在相同水平上的频率验证分析发现了稳定的分子间相互作用形式是HCN(HNC)作为质子供体或作为质子受体形成的复合物. 基组重叠误差对总相互作用能的影响均小于3.34 kJ/mol. 通过自然键轨道(NBO)分析, 研究了单体和复合物中的原子电荷和电荷转移对分子间相互作用的影响. 对称性匹配微扰理论(SAPT, Symmetry Adapted Perturbation Theory)能量分解结果表明, 在分子间相互作用中, 静电作用与诱导作用占主导地位, 而诱导作用与复合物的电荷转移之间具有良好的正相关性.  相似文献   
6.
7.
The stability and geometry of a hydrogen‐bonded dimer is traditionally attributed mainly to the central moiety A?H???B, and is often discussed only in terms of electrostatic interactions. The influence of substituents and of interactions other than electrostatic ones on the stability and geometry of hydrogen‐bonded complexes has seldom been addressed. An analysis of the interaction energy in the water dimer and several alcohol dimers—performed in the present work by using symmetry‐adapted perturbation theory—shows that the size and shape of substituents strongly influence the stabilization of hydrogen‐bonded complexes. The larger and bulkier the substituents are, the more important the attractive dispersion interaction is, which eventually becomes of the same magnitude as the total stabilization energy. Electrostatics alone are a poor predictor of the hydrogen‐bond stability trends in the sequence of dimers investigated, and in fact, dispersion interactions predict these trends better.  相似文献   
8.
9.
A theoretical study of the C? H···N hydrogen bond in the interactions of trihalomethanes CHX3 (X = F, Cl, Br) with ammonia and its halogen derivatives NH2Y (Y = F, Cl, Br) has been carried out thoroughly. The complexes are quite stable, and their stability increases in going from CHF3 to CHCl3 then to CHBr3 when Y keeps unchanged. With the same CHX3 proton donor, enhancement of the gas phase basicity of NH2Y strengthens stability of the CHX3···NH2Y complex. The C? H···N hydrogen bond strength is directly proportional to the increase of proton affinity (PA) at N site of NH2Y and the decrease of deprotonation enthalpy (DPE) of C? H bond in CHX3. The CHF3 primarily appears to favor blue shift while the red‐shift is referred to the CHBr3. The blue‐ or red‐shift of CHCl3 strongly depends on PA at N site of NH2Y. We suggest the ratio of DPE/PA as a factor to predict which type of hydrogen bond is observed upon complexation. The SAPT2+ results show that all C? H···N interactions in the complexes are electrostatically driven regardless of the type of hydrogen bond, between 48% and 61% of the total attractive energy, and partly contributed by both induction and dispersion energies.  相似文献   
10.
The wide occurrence of halogen-centered noncovalent interactions in crystal growth and design prompted this study, which includes a mini review of recent advances in the field. Particular emphasis is placed on providing compelling theoretical evidence of the formation of these interactions between sites of positive electrostatic potential, as well as between sites of negative electrostatic potential, localized on the electrostatic surfaces of the bound fluorine atoms in a prototypical system, hexafluoropropylene (C3F6), upon its interaction with another same molecule to form (C3F6)2 dimers. The existence of σ- and π-hole interactions is shown for the stable dimers. Even so, weakly bound interactions locally responsible in holding the molecular fragments together cannot and should not be overlooked since they are partly responsible for determining the overall geometry of the crystal. The results of combined quantum theory of atoms in molecules, molecular electrostatic surface potential, and reduced density gradient noncovalent interaction analyses showed that these latter interactions do indeed play a role in the stability and growth of crystalline C3F6 itself and the (C3F6)2 dimers. A symmetry adapted perturbation theory energy decomposition analysis leads to the conclusion that a great majority of the (C3F6)2 dimers examined are the consequence of dispersion (and electrostatics), with nonnegligible contribution from polarization, which together competes with an exchange repulsion component to determine the equilibrium geometries. In a few structures of the (C3F6)2 dimer, the fluorine is found to serve as a six-center five-bond donor/acceptor, as found for carbon in other systems (Malischewski and Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368). © 2019 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号