首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   6篇
  国内免费   29篇
化学   108篇
晶体学   1篇
力学   1篇
数学   1篇
物理学   111篇
  2023年   6篇
  2022年   6篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   4篇
  2017年   15篇
  2016年   10篇
  2015年   12篇
  2014年   17篇
  2013年   15篇
  2012年   18篇
  2011年   17篇
  2010年   13篇
  2009年   13篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有222条查询结果,搜索用时 171 毫秒
1.
This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.  相似文献   
2.
3.
4.
《Current Applied Physics》2015,15(4):511-519
The flat a-Si and slanted nanocolumnar (S-nC) a-Si thin films were prepared on c-Si and corning glass substrates by e-beam physical vapor deposition (EB-PVD) technique. The structural properties of all the grown thin films were determined by X-Ray Diffraction (XRD) analysis and Raman spectroscopy. Surface and cross-sectional morphology of a-Si/c-Si and S-nC a-Si/c-Si heterojunctions were investigated by Field Emission Scanning Electron Microscopy (FE-SEM). Sculptured thin films demonstrate potential for significant nanoscale applications in the area of thin film technology. The electrical and photovoltaic properties of these heterojunctions have been investigated by means of dc current–voltage (I–V) measurements at room temperature in dark and light conditions. The S-nC STFs' performance has been found to be improvable on changing the morphology of the thin film. We have found that, the porous morphology of this structure improves the photosensitivity features in photovoltaic devices and solar cell technology. We gained a high open voltage value, such as 900 mV in S-nC a-Si/c-Si thin film, without any doping process.  相似文献   
5.
《Current Applied Physics》2014,14(6):881-885
We report on the fabrication of wheat-like CdSe/CdTe thin film heterojunction solar cells made using a simple electrochemical deposition method and close-spaced sublimation technology on indium tin oxide (ITO) substrates. Structural, optical, and electrical properties of the wheat-like CdSe/CdTe thin film junctions were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive spectrometry (EDS), ultraviolet–visible (UV–vis) absorption spectrum and Keithley 2400 analysis. A significant red-shift of the absorption edge is observed in this heterojunction. The heterostructure is composed of the wheat-like CdSe array and CdTe thin film, showing optical properties typical of type II heterostructures that are suited for photovoltaic applications. A photocurrent density of 8.34 mA/cm2 has been obtained under visible light illumination of 100 mW/cm2. This study demonstrates that the electrochemical deposition and the close-spaced sublimation technology, which are easily adapted to other chemical systems, are promising techniques for large-scale fabrication of low-cost heterojunction solar cells.  相似文献   
6.
Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.Their molecular structures have been confirmed by FT-IR,1H NMR and 13C NMR.All these copolymers exhibit broad and strong absorption bands in UV-vis region,and their optical band gaps are calculated to be 1.6-2.0 eV.suggesting that they have good coverage with the solar spectrum.These polymers have good thermostability and solubility in common organic solvents.Moreover,all these objective macromolecules possess high electron affinity of~3.8 eV determined from cyclic voltammetry measurement,implying that they are potential n-type polymeric photovoltaic materials.  相似文献   
7.
Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.Their molecular structures have been confirmed by FT-IR,~1H NMR and ~(13)C NMR.All these copolymers exhibit broad and strong absorption bands in UV-vis region,and their optical band gaps are calculated to be 1.6-2.0 eV.suggesting that they have good coverage with the solar spectrum.These polymers...  相似文献   
8.
We report an electro-photo double modulation of the fermi level in a WSe2/graphene heterojunction. The heterojunction exhibits high ION/IOFF ratio (~103) in transfer characteristic in dark and distinct rectification behavior in output characteristic under light illumination, respectively. Time-dependent photoresponse reveals that the heterojunction has a considerable potential in the application of photodetection. Interestingly, an exotic current peak is observed in transfer characteristic under light illumination. This novel behavior is attributed to the tunable fermi level at the WSe2/graphene heterojunction by electro-photo double modulation. The results may be helpful to develop tunable photovoltaic optoelectronics based on van der Waals heterojunctions.  相似文献   
9.
The output energy of photovoltaic (PV) modules is influenced by the spectral irradiance distribution of the solar spectrum under outdoor conditions. To rate the precise output energy of PV modules, the correction of short circuit current (ISC) based on actual environmental conditions is needed, because ISC significantly depends on the shape of the spectral irradiance distribution. The average photon energy (APE) is a zero-dimensional index for spectral irradiance distribution, and APE value uniquely describes the shape of a solar spectrum. Thus, APE has an impact on ISC of PV modules. In this contribution, the relationship between APE coefficient and ISC of the multi-crystalline silicon, single-crystalline silicon, heterojunction intrinsic thin-layer, back contact, copper indium selenide and cadmium telluride PV modules has explored. It is revealed that APE value changes the ISC of PV modules which appeared to have immense possibilities of ISC correction using APE coefficient. This new approach can be very effective for precise rating the output energy of PV modules under actual outdoor conditions.  相似文献   
10.
Novel photovoltaic cells involving a nonconjugated conductive polymer have been fabricated using titanium dioxide/doped styrene-butadiene-rubber/carbon on ITO coated PET substrates. Photocurrents and photo-voltages for different intensities of light (emission at 300–700 nm) have been measured. These cells have shown significantly higher photocurrents and photo-voltages compared to previous reports. A photocurrent density of about 0.25 mA/cm2 and a photo-voltage of 0.74 V have been measured for a light intensity of ~4 mW/cm2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号